921 resultados para Error analysis (Mathematics)
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Resumo:
AMS subject classification: 90C30, 90C33.
Resumo:
2000 Mathematics Subject Classification: 62H30, 62P99
Resumo:
This study determined the levels of algebra problem solving skill at which worked examples promoted learning of further problem solving skill and reduction of cognitive load in college developmental algebra students. Problem solving skill was objectively measured as error production; cognitive load was subjectively measured as perceived mental effort. ^ Sixty-three Ss were pretested, received homework of worked examples or mass problem solving, and posttested. Univarate ANCOVA (covariate = previous grade) were performed on the practice and posttest data. The factors used in the analysis were practice strategy (worked examples vs. mass problem solving) and algebra problem solving skill (low vs. moderate vs. high). Students in the practice phase who studied worked examples exhibited (a) fewer errors and reduced cognitive load, at moderate skill; (b) neither fewer errors nor reduced cognitive load, at low skill; and (c) only reduced cognitive load, at high skill. In the posttest, only cognitive load was reduced. ^ The results suggested that worked examples be emphasized for developmental students with moderate problem solving skill. Areas for further research were discussed. ^
Resumo:
In this dissertation, we study the behavior of exciton-polariton quasiparticles in semiconductor microcavities, under the sourceless and lossless conditions.
First, we simplify the original model by removing the photon dispersion term, thus effectively turn the PDEs system to an ODEs system,
and investigate the behavior of the resulting system, including the equilibrium points and the wave functions of the excitons and the photons.
Second, we add the dispersion term for the excitons to the original model and prove that the band of the discontinuous solitons now become dark solitons.
Third, we employ the Strang-splitting method to our sytem of PDEs and prove the first-order and second-order error bounds in the $H^1$ norm and the $L_2$ norm, respectively.
Using this numerical result, we analyze the stability of the steady state bright soliton solution. This solution revolves around the $x$-axis as time progresses
and the perturbed soliton also rotates around the $x$-axis and tracks closely in terms of amplitude but lags behind the exact one. Our numerical result shows orbital
stability but no $L_2$ stability.
Resumo:
A constructivist philosophy underlies the Irish primary mathematics curriculum. As constructivism is a theory of learning its implications for teaching need to be addressed. This study explores the experiences of four senior class primary teachers as they endeavour to teach mathematics from a constructivist-compatible perspective with primary school children in Ireland over a school-year period. Such a perspective implies that children should take ownership of their learning while working in groups on tasks which challenge them at their zone of proximal development. The key question on which the research is based is: to what extent will an exposure to constructivism and its implications for the classroom impact on teaching practices within the senior primary mathematics classroom in both the short and longer term? Although several perspectives on constructivism have evolved (von Glaserfeld (1995), Cobb and Yackel (1996), Ernest (1991,1998)), it is the synthesis of the emergent perspective which becomes pivotal to the Irish primary mathematics curriculum. Tracking the development of four primary teachers in a professional learning initiative involving constructivist-compatible approaches necessitated the use of Borko’s (2004) Phase 1 research methodology to account for the evolution in teachers’ understanding of constructivism. Teachers’ and pupils’ viewpoints were recorded using both audio and video technology. Teachers were interviewed at the beginning and end of the project and also one year on to ascertain how their views had evolved. Pupils were interviewed at the end of the project only. The data were analysed from a Jaworskian perspective i.e. using the categories of her Teaching Triad of management of learning, mathematical challenge and sensitivity to students. Management of learning concerns how the teacher organises her classroom to maximise learning opportunities for pupils. Mathematical challenge is reminiscent of the Vygotskian (1978) construct of the zone of proximal development. Sensitivity to students involves a consciousness on the part of the teacher as to how pupils are progressing with a mathematical task and whether or not to intervene to scaffold their learning. Through this analysis a synthesis of the teachers’ interpretations of constructivist philosophy with concomitant implications for theory, policy and practice emerges. The study identifies strategies for teachers wishing to adopt a constructivist-compatible approach to their work. Like O’Shea (2009) it also highlights the likely difficulties to be experienced by such teachers as they move from utilising teacher-dominated methods of teaching mathematics to ones in which pupils have more ownership over their learning.
Resumo:
Energy efficiency improvement has been a key objective of China’s long-term energy policy. In this paper, we derive single-factor technical energy efficiency (abbreviated as energy efficiency) in China from multi-factor efficiency estimated by means of a translog production function and a stochastic frontier model on the basis of panel data on 29 Chinese provinces over the period 2003–2011. We find that average energy efficiency has been increasing over the research period and that the provinces with the highest energy efficiency are at the east coast and the ones with the lowest in the west, with an intermediate corridor in between. In the analysis of the determinants of energy efficiency by means of a spatial Durbin error model both factors in the own province and in first-order neighboring provinces are considered. Per capita income in the own province has a positive effect. Furthermore, foreign direct investment and population density in the own province and in neighboring provinces have positive effects, whereas the share of state-owned enterprises in Gross Provincial Product in the own province and in neighboring provinces has negative effects. From the analysis it follows that inflow of foreign direct investment and reform of state-owned enterprises are important policy handles.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
Enhancing children's self-concepts is widely accepted as a critical educational outcome of schooling and is postulated as a mediating variable that facilitates the attainment of other desired outcomes such as improved academic achievement. Despite considerable advances in self-concept research, there has been limited progress in devising teacher-administered enhancement interventions. This is unfortunate as teachers are crucial change agents during important developmental periods when self-concept is formed. The primary aim of the present investigation is to build on the promising features of previous self-concept enhancement studies by: (a) combining two exciting research directions developed by Burnett and Craven to develop a potentially powerful cognitive-based intervention; (b) incorporating recent developments in theory and measurement to ensure that the multidimensionality of self-concept is accounted for in the research design; (c) fully investigating the effects of a potentially strong cognitive intervention on reading, mathematics, school and learning self-concepts by using a large sample size and a sophisticated research design; (d) evaluating the effects of the intervention on affective and cognitive subcomponents of reading, mathematics, school and learning self-concepts over time to test for differential effects of the intervention; (e) modifying and extending current procedures to maximise the successful implementation of a teacher-mediated intervention in a naturalistic setting by incorporating sophisticated teacher training as suggested by Hattie (1992) and including an assessment of the efficacy of implementation; and (f) examining the durability of effects associated with the intervention.
Resumo:
This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.