921 resultados para Energy systems optimisation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.