992 resultados para Elemental carbon
Resumo:
Soil organic carbon (C) sequestration rates based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to simulate the economic potential for C sequestration in response to conservation tillage in the six agro-ecological zones within the Southern Region of the Australian grains industry. The net C sequestration rate over 20 years for the Southern Region (which includes discounting for associated greenhouse gases) is estimated to be 3.6 or 6.3 Mg C/ha after converting to either minimum or no-tillage practices, respectively, with no-till practices estimated to return 75% more carbon on average than minimum tillage. The highest net gains in C per ha are realised when converting from conventional to no-tillage practices in the high-activity clay soils of the High Rainfall and Wimmera agro-ecological zones. On the basis of total area available for change, the Slopes agro-ecological zone offers the highest net returns, potentially sequestering an additional 7.1 Mt C under no-tillage scenario over 20 years. The economic analysis was summarised as C supply curves for each of the 6 zones expressing the total additional C accumulated over 20 years for a price per t C sequestered ranging from zero to AU$200. For a price of $50/Mg C, a total of 427 000 Mg C would be sequestered over 20 years across the Southern Region, <5% of the simulated C sequestration potential of 9.1 Mt for the region. The Wimmera and Mid-North offer the largest gains in C under minimum tillage over 20 years of all zones for all C prices. For the no-tillage scenario, for a price of $50/Mg C, 1.74 Mt C would be sequestered over 20 years across the Southern Region, <10% of the simulated C sequestration potential of 18.6 Mt for the region over 20 years. The Slopes agro-ecological zone offers the best return in C over 20 years under no-tillage for all C prices. The Mallee offers the least return for both minimum and no-tillage scenarios. At a price of $200/Mg C, the transition from conventional tillage to minimum or no-tillage practices will only realise 19% and 33%, respectively, of the total biogeochemical sequestration potential of crop and pasture systems of the Southern Region over a 20-year period.
Resumo:
A significant reduction in carbon emissions is a global mission and the construction industry has an indispensable role to play as a major carbon dioxide (CO2) generator. Over the years, various building environmental assessment (BEA) models and concepts have been developed to promote environmentally responsible design and construction. However, limited attention has been placed on assessing and benchmarking the carbon emitted throughout the lifecycle of building facilities. This situation could undermine the construction industry’s potential to reduce its dependence on raw materials, recognise the negative impacts of producing new materials, and intensify the recycle and reuse process. In this paper, current BEA approaches adopted by the construction industry are first introduced. The focus of these models and concepts is then examined. Following a brief review of lifecycle analysis, the boundary in which a lifecycle carbon emission analysis should be set for a construction project is identified. The paper concludes by highlighting the potential barriers of applying lifecycle carbon emissions analysis in the construction industry. It is proposed that lifecycle carbon emission analysis can be integrated with existing BEA models to provide a more comprehensive and accurate evaluation on the cradle-to-grave environmental performance of a construction facility. In doing so, this can assist owners and clients to identify the optimum solution to maximise emissions reduction opportunities.
Resumo:
The [Cp′3U] metallocenes contain substituted cyclopentadienyl ligands and UIII with f3 electron configuration. They are good π donors and bind π-accepting ligands (L) such as carbon monoxide and isocyanides to form the corresponding adducts [Cp′3U(L)] (see scheme). The π-donating capability of the [Cp′3U] fragments appears to be readily modulated by the substituents on the cyclopentadienyl ligand.
Resumo:
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.
Resumo:
This paper examines some of the central global ethical and governance challenges of climate change and carbon emis-sions reduction in relation to globalization, the “global financial crisis” (GFC), and unsustainable conceptions of the “good life”, and argues in favour of the development of a global carbon “integrity system”. It is argued that a funda-mental driver of our climate problems is the incipient spread of an unsustainable Western version of the “good life”, where resource-intensive, high-carbon western lifestyles, although frequently criticized as unsustainable and deeply unsatisfying, appear to have established an unearned ethical legitimacy. While the ultimate solution to climate change is the development of low carbon lifestyles, the paper argues that it is also important that economic incentives support and stimulate that search: the sustainable versions of the good life provide an ethical pull, whilst the incentives provide an economic push. Yet, if we are going to secure sustainable low carbon lifestyles, it is argued, we need more than the ethical pull and the economic push. Each needs to be institutionalized—built into the governance of global, regional, national, sub-regional, corporate and professional institutions. Where currently weakness in each exacerbates the weaknesses in others, it is argued that governance reform is required in all areas supporting sustainable, low carbon versions of the good life.
Resumo:
Epoxy-multiwall carbon nanotube nanocomposite thin films were prepared by spin casting. High power air plasma was used to preferentially etch a coating of epoxy and expose the underlying carbon nanotube network. Scanning electron microscopy (SEM) examination revealed well distributed and spatially connected carbon nanotube network in both the longitudinal direction (plasma etched surface) and traverse direction (through-thickness fractured surface). Topographical examination and conductive mode imaging of the plasma etched surface using atomic force microscope (AFM) in the contact mode enabled direct imaging of topography and current maps of the embedded carbon nanotube network. Bundles consisting of at least three single carbon nanotubes form part of the percolating network observed under high resolution current maps. Predominantly non-ohmic response is obtained in this study; behaviour attributed to less than effective polymer material removal when using air plasma etching.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Hence, there is an urgent need to monitor our infrastructures to prolong their life span, at the same time catering for heavier and faster moving traffics. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for structural health monitoring. The CNTs, a key material in nanotechnology has aroused great interest in the research community due to their remarkable mechanical, electrochemical, piezoresistive and other physical properties. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties when subjected to chemical solutions, to simulate a chemical reaction due to corrosion and real life corrosion experimental tests. The electrical resistance of the sensor electrode was dramatically changed due to corrosion. The novel sensor is expected to effectively detect corrosion in structures based on the measurement of electrical impedances of the CNT composite.
Resumo:
Policies that encourage greenhouse-gas emitters to mitigate emissions through terrestrial carbon (C) offsets – C sequestration in soils or biomass – will promote practices that reduce erosion and build soil fertility, while fostering adaptation to climate change, agricultural development, and rehabilitation of degraded soils. However none of these benefits will be possible until changes in C stocks can be documented accurately and cost-effectively. This is particularly challenging when dealing with changes in soil organic C (SOC) stocks. Precise methods for measuring C in soil samples are well established, but spatial variability in the factors that determine SOC stocks makes it difficult to document change. Widespread interest in the benefits of SOC sequestration has brought this issue to the fore in the development of US and international climate policy. Here, we review the challenges to documenting changes in SOC stocks, how policy decisions influence offset documentation requirements, and the benefits and drawbacks of different sampling strategies and extrapolation methods.
Resumo:
Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.