896 resultados para Electrochemical capacitance spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A surface confined redox group contributes to an interfacial charging (quantifiable by redox capacitance) that can be sensitively probed by impedance derived capacitance spectroscopy. In generating mixed molecular films comprising such redox groups, together with specific recognition elements (here antibodies), this charging signal is able to sensitively transduce the recognition and binding of specific analytes. This novel transduction method, exemplified here with C-reactive protein, an important biomarker of cardiac status and general trauma, is equally applicable to any suitably prepared interfacial combination of redox reporter and receptor. The assays are label free, ultrasensitive, highly specific and accompanied by a good linear range. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)