987 resultados para ETHYLENE POLYMERIZATION CATALYSTS
Resumo:
Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Current processing technology limits the cost-effective production of levulinic acid in commercial quantities from biomass. The key to improving the yield and effi ciency of levulinic acid production from biomass lies in the ability to optimize and isolate the intermediate products at each step of the reaction pathway and reduce re-polymerization and side reactions. New technologies (including the use of microwave irradiation and ionic liquids) and the development of highly selective catalysts would provide the necessary step change for the optimization of key reactions. A processing environment that allows the use of biphasic systems and/or continuous extraction of products would increase reaction rates, yields and product quality. This review outlines the chemistry of levulinic acid synthesis and discusses current and potential technologies for producing levulinic acid from lignocellulosics.
Resumo:
Women are substantially under-represented in the professoriate in Australia with a ratio of one female professor to every three male professors. This gender imbalance has been an ongoing concern with various affirmative action programs implemented in universities but to limited effect. Hence, there is a need to investigate the catalysts for and inhibitors to women’s ascent to the professoriate. This investigation focussed on women appointed to the professoriate between 2005, when a research quality assessment was first proposed, and 2008. Henceforth, these women are referred to as “New Women Professors”. The catalysts and inhibitors in these women’s careers were investigated through an electronic survey and focus group interviews. The survey was administered to new women professors (n=255) and new men professors (n=240) to enable a comparison of responses. However, only women participated in focus group discussions (n=21). An analysis of the survey and interview data revealed that the most critical catalysts for women’s advancement to the professoriate were equal employment opportunities and mentoring. Equal opportunity initiatives provided women with access to traditionally male-dominated forums. Mentoring gave women an insider perspective on the complexity of academia and the politics of the academy. The key inhibitors to women’s career advancement were negative discrimination, the culture of the boys’ club, the tension between personal and professional life, and isolation. Negative discrimination and the boys’ club are problematic because they favour men and marginalise women. The tension between personal and professional life is a particular concern for women who bear children and typically assume the major role in a family for child rearing. Isolation was a concern for both women and men with isolation appearing to increase after ascent to the professoriate. Knowledge of the significant catalysts and inhibitors provides a pragmatic way to orient universities towards redressing the gender balance in the professoriate.