939 resultados para ELECTROLUMINESCENT POLYMER-FILMS
Resumo:
In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. Fromthe indoor measurements employing a tungsten halogen lamp (50mW/cm2 illumination), an opencircuit voltage of 0.41V and a short-circuit current of 5.6mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74mW/cm2) yielded an open-circuit voltage of 0.46V and a short-circuit current of 9.37mA
Resumo:
New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEMI). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 x 10(-4) S/cm at room temperature to 9.6 x 10(-4) S/cm at 80 degrees C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.
Resumo:
An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.
Langmuir and langmuir-blodgett films of polyfluorenes and their use in polymer light-emitting diodes
Resumo:
The Langmuir and Langmuir-Blodgett (LB) film properties of two polyfluorene derivatives, namely poly(2,7-9,9'-dihexylfluorene-dyil) (PDHF) and poly(9,9 dihexylfluorene-dyil-vynilene-alt-1,4-phenylene-vyninele) (PDHF-PV), are reported. Surface pressure (Pi-A) and surface potential (Delta V-A) isotherms indicated that PDHF-PV forms true monolayers at the air/water interface, but PDHF does not. LB films could be transferred onto various types of substrate for both PDHF and PDHF-PV. Only the LB films from PDHF-PV could withstand deposition of a layer of evaporated metal to form a light-emitting diode (PLED), which had typical rectifying characteristics and emitted blue light. It is inferred that the ability of the polymer to form true monomolecular layers at the air/water interface seems to be associated with the viability of the LB films in PLEDs.
Resumo:
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.
Resumo:
In a homemade UV-Ozone generator, different ignition tubes extracted from HID mercury vapor lamps were investigated, namely: 80, 125, 250 and 400 watts. The performance of the generator in function of the type of the ignition lamp was monitored by the measurements of the ozone concentration and the temperature increment. The results have shown that the 400 W set up presented the highest ozone production, which was used in the treatment of indium tin oxide (ITO) films. Polymer light emitting diodes were assembled using ITO films, treated for 10, 20 and 30 min, as an anode. The overall results indicate improvement of the threshold voltage (reduction) and electroluminescence of these devices.
Resumo:
Polymer brushes have unique properties with a large variety of possible applications ranging from responsive coatings and drug delivery to lubrication and sensing. For further development a detailed understanding of the properties is needed. Established characterization methods, however, only supply information of the surface. Experimental data about the inner “bulk” structure of polymer brushes is still missing.rnScattering methods under grazing incidence supply structural information of surfaces as well as structures beneath it. Nanomechanical cantilevers supply stress data, which is giving information about the forces acting inside the polymer brush film. In this thesis these two techniques are further developed and used to deepen the understanding of polymer brushes. rnThe experimental work is divided into four chapters. Chapter 2 deals with the preparation of polymer brushes on top of nanomechanical cantilever sensors as well as large area sample by using a “grafting-to” technique. The further development of nanomechanical cantilever readout is subject of chapter 3. In order to simplify cantilever sensing, a method is investigated which allows one to perform multiple bending experiments on top of a single cantilever. To do so, a way to correlate different curvatures is introduced as well as a way to conveniently locate differently coated segments. In chapter 4 the change in structure upon solvent treatment of mixed polymer brushes is investigated by using scattering methods and nanomechanical cantilevers amongst others. This allows one to explain the domain memory effect, which is typically found in such systems. Chapter 5 describes the implementation of a phase shifting interferometer - used for readout of nanomechanical cantilevers - into the µ-focused scattering beamline BW4, allowing simultaneous measurements of stress and structure information. The last experimental chapter 6 deals with the roughness correlation in polymer brushes and its dependence on the chain tethered density.rnIn summary, the thesis deals with utilization of new experimental techniques for the investigation of polymer brushes and further development of the techniques themselves.rn
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).