899 resultados para EFD energy conversion
Resumo:
Currently, lackluster battery capability is restricting the widespread integration of Smart Grids, limiting the long-term feasibility of alternative, green energy conversion technologies. Silicon nanoparticles have great conductivity for applications in rechargeable batteries, but have degradation issues due to changes in volume during lithiation/delithiation cycles. To combat this, we use electrochemical deposition to uniformly space silicon particles on graphene sheets to create a more stable structure. We found the process of electrochemical deposition degraded the graphene binding in the electrode material, severely reducing charge capacity. But, the usage of mechanically mixing silicon particles with grapheme yielded batteries better than those that are commercially available.
Resumo:
In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.
Resumo:
This paper presented results from a details and comprehensive simulation using finite element method of the practical operation of an electrical machine. The results it displayed have been used in practice to design more efficient equipment.
Resumo:
.
Resumo:
The paper presents a multiple input single output fuzzy logic governor algorithm that can be used to improve the transient response of a diesel generating set, when supplying an islanded load. The proposed governor uses the traditional speed input in addition to voltage and power factor to modify the fuelling requirements during various load disturbances. The use of fuzzy logic control allows the use of PID type structures that can provide variable gain strategies to account for non-linearities in the system. Fuzzy logic also provides a means of processing other input information by linguistic reasoning and a logical control output to aid the governor action during transient disturbance. The test results were obtained using a 50 kVA naturally aspirated diesel generator testing facility. Both real and reactive load tests were conducted. The complex load test results demonstrate that, by using additional inputs to the governor algorithm, enhanced generator transient speed recovery response can be obtained.
Resumo:
In this paper, a Radial Basis Function neural network based AVR is proposed. A control strategy which generates local linear models from a global neural model on-line is used to derive controller feedback gains based on the Generalised Minimum Variance technique. Testing is carried out on a micromachine system which enables evaluation of practical implementation of the scheme. Constraints imposed by gathering training data, computational load, and memory requirements for the training algorithm are addressed.
Resumo:
The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab–Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.
Resumo:
Laser-driven coherent extreme-ultraviolet (XUV) sources provide pulses lasting a few hundred attoseconds(1,2), enabling real-time access to dynamic changes of the electronic structure of matter(3,4), the fastest processes outside the atomic nucleus. These pulses, however, are typically rather weak. Exploiting the ultrahigh brilliance of accelerator-based XUV sources(5) and the unique time structure of their laser-based counterparts would open intriguing opportunities in ultrafast X-ray and high-field science, extending powerful nonlinear optical and pump-probe techniques towards X-ray frequencies, and paving the way towards unequalled radiation intensities. Relativistic laser-plasma interactions have been identified as a promising approach to achieve this goal(6-13). Recent experiments confirmed that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with unparalleled efficiency, and demonstrated the scalability of the generation technique towards hard X-rays(14-19). Here we show that the phases of the XUV harmonics emanating from the interaction processes are synchronized, and therefore enable attosecond temporal bunching. Along with the previous findings concerning energy conversion and recent advances in high-power laser technology, our experiment demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond.