864 resultados para Discrete-time linear systems
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
Linear Algebra—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Linear Algebra. Vector spaces are presented first, and linear transformations are reviewed secondly. Matrices and Linear systems are presented. Determinants and Basic geometry are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
Nowadays, many real-time operating systems discretize the time relying on a system time unit. To take this behavior into account, real-time scheduling algorithms must adopt a discrete-time model in which both timing requirements of tasks and their time allocations have to be integer multiples of the system time unit. That is, tasks cannot be executed for less than one time unit, which implies that they always have to achieve a minimum amount of work before they can be preempted. Assuming such a discrete-time model, the authors of Zhu et al. (Proceedings of the 24th IEEE international real-time systems symposium (RTSS 2003), 2003, J Parallel Distrib Comput 71(10):1411–1425, 2011) proposed an efficient “boundary fair” algorithm (named BF) and proved its optimality for the scheduling of periodic tasks while achieving full system utilization. However, BF cannot handle sporadic tasks due to their inherent irregular and unpredictable job release patterns. In this paper, we propose an optimal boundary-fair scheduling algorithm for sporadic tasks (named BF TeX ), which follows the same principle as BF by making scheduling decisions only at the job arrival times and (expected) task deadlines. This new algorithm was implemented in Linux and we show through experiments conducted upon a multicore machine that BF TeX outperforms the state-of-the-art discrete-time optimal scheduler (PD TeX ), benefiting from much less scheduling overheads. Furthermore, it appears from these experimental results that BF TeX is barely dependent on the length of the system time unit while PD TeX —the only other existing solution for the scheduling of sporadic tasks in discrete-time systems—sees its number of preemptions, migrations and the time spent to take scheduling decisions increasing linearly when improving the time resolution of the system.
Resumo:
This paper employs the Lyapunov direct method for the stability analysis of fractional order linear systems subject to input saturation. A new stability condition based on saturation function is adopted for estimating the domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is straightforward to handle the problem both in analysis and design because of using Lyapunov method, (2) the estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed method.
Resumo:
3rd Workshop on High-performance and Real-time Embedded Systems (HIRES 2015). 21, Jan, 2015. Amsterdam, Netherlands.
Resumo:
Presented at 21st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015, pp 122-131. Hong Kong, China.
Resumo:
Presented at IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015.
Resumo:
The main purpose of this work is to give a survey of main monotonicity properties of queueing processes based on the coupling method. The literature on this topic is quite extensive, and we do not consider all aspects of this topic. Our more concrete goal is to select the most interesting basic monotonicity results and give simple and elegant proofs. Also we give a few new (or revised) proofs of a few important monotonicity properties for the queue-size and workload processes both in single-server and multi- server systems. The paper is organized as follows. In Section 1, the basic notions and results on coupling method are given. Section 2 contains known coupling results for renewal processes with focus on construction of synchronized renewal instants for a superposition of independent renewal processes. In Section 3, we present basic monotonicity results for the queue-size and workload processes. We consider both discrete-and continuous-time queueing systems with single and multi servers. Less known results on monotonicity of queueing processes with dependent service times and interarrival times are also presented. Section 4 is devoted to monotonicity of general Jackson-type queueing networks with Markovian routing. This section is based on the notable paper [17]. Finally, Section 5 contains elements of stability analysis of regenerative queues and networks, where coupling and monotonicity results play a crucial role to establish minimal suficient stability conditions. Besides, we present some new monotonicity results for tandem networks.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time
Resumo:
The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.
Resumo:
A simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information, agents decide whether to upgrade their level or not, balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.