878 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reading group on diverse topics of interest for the Information: Signals, Images, Systems (ISIS) Research Group of the School of Electronics and Computer Science, University of Southampton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La percepció per visió es millorada quan es pot gaudir d'un camp de visió ampli. Aquesta tesi es concentra en la percepció visual de la profunditat amb l'ajuda de càmeres omnidireccionals. La percepció 3D s'obté generalment en la visió per computadora utilitzant configuracions estèreo amb el desavantatge del cost computacional elevat a l'hora de buscar els elements visuals comuns entre les imatges. La solució que ofereix aquesta tesi és l'ús de la llum estructurada per resoldre el problema de relacionar les correspondències. S'ha realitzat un estudi sobre els sistemes de visió omnidireccional. S'han avaluat vàries configuracions estèreo i s'ha escollit la millor. Els paràmetres del model són difícils de mesurar directament i, en conseqüència, s'ha desenvolupat una sèrie de mètodes de calibració. Els resultats obtinguts són prometedors i demostren que el sensor pot ésser utilitzat en aplicacions per a la percepció de la profunditat com serien el modelatge de l'escena, la inspecció de canonades, navegació de robots, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is twenty-five years since the posthumous publication of David Marr's book Vision [1]. Only 35 years old when he died, Man, had already dramatically influenced vision research. His book, and the series of papers that preceded it, have had a lasting impact on the way that researchers approach human and computer vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current e-learning systems are increasing their importance in higher education. However, the state of the art of e-learning applications, besides the state of the practice, does not achieve the level of interactivity that current learning theories advocate. In this paper, the possibility of enhancing e-learning systems to achieve deep learning has been studied by replicating an experiment in which students had to learn basic software engineering principles. One group learned these principles using a static approach, while the other group learned the same principles using a system-dynamics-based approach, which provided interactivity and feedback. The results show that, quantitatively, the latter group achieved a better understanding of the principles; furthermore, qualitatively, they enjoyed the learning experience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses upon a series of empirical studies which examine communication and learning in online glocal communities within higher education in Sweden. A recurring theme in the theoretical framework deals with issues of languaging in virtual multimodal environments as well as the making of identity and negotiation of meaning in these settings; analyzing the activity, what people do, in contraposition to the study of how people talk about their activity. The studies arise from netnographic work during two online Italian for Beginners courses offered by a Swedish university. Microanalyses of the interactions occurring through multimodal video-conferencing software are amplified by the study of the courses’ organisation of space and time and have allowed for the identification of communicative strategies and interactional patterns in virtual learning sites when participants communicate in a language variety with which they have a limited experience. The findings from the four studies included in the thesis indicate that students who are part of institutional virtual higher educational settings make use of several resources in order to perform their identity positions inside the group as a way to enrich and nurture the process of communication and learning in this online glocal community. The sociocultural dialogical analyses also shed light on the ways in which participants gathering in discursive technological spaces benefit from the opportunity to go to class without commuting to the physical building of the institution providing the course. This identity position is, thus, both experienced by participants in interaction, and also afforded by the ‘spaceless’ nature of the online environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to present the current development status of a low cost system for surface reconstruction with structured light. The acquisition system is composed of a single off-the-shelf digital camera and a pattern projector. A pattern codification strategy was developed to allow the pattern recognition automatically and a calibration methodology ensures the determination of the direction vector of each pattern. The experiments indicated that an accuracy of 0.5mm in depth could be achieved for typical applications.