903 resultados para Data-driven knowledge acquisition
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.
Resumo:
The internet and digital technologies revolutionized the economy. Regulating the digital market has become a priority for the European Union. While promoting innovation and development, EU institutions must assure that the digital market maintains a competitive structure. Among the numerous elements characterizing the digital sector, users’ data are particularly important. Digital services are centered around personal data, the accumulation of which contributed to the centralization of market power in the hands of a few large providers. As a result, data-driven mergers and data-related abuses gained a central role for the purposes of EU antitrust enforcement. In light of these considerations, this work aims at assessing whether EU competition law is well-suited to address data-driven mergers and data-related abuses of dominance. These conducts are of crucial importance to the maintenance of competition in the digital sector, insofar as the accumulation of users’ data constitutes a fundamental competitive advantage. To begin with, part 1 addresses the specific features of the digital market and their impact on the definition of the relevant market and the assessment of dominance by antitrust authorities. Secondly, part 2 analyzes the EU’s case law on data-driven mergers to verify if merger control is well-suited to address these concentrations. Thirdly, part 3 discusses abuses of dominance in the phase of data collection and the legal frameworks applicable to these conducts. Fourthly, part 4 focuses on access to “essential” datasets and the indirect effects of anticompetitive conducts on rivals’ ability to access users’ information. Finally, Part 5 discusses differential pricing practices implemented online and based on personal data. As it will be assessed, the combination of an efficient competition law enforcement and the auspicial adoption of a specific regulation seems to be the best solution to face the challenges raised by “data-related dominance”.
Resumo:
Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).
Resumo:
Nel panorama aziendale odierno, risulta essere di fondamentale importanza la capacità, da parte di un’azienda o di una società di servizi, di orientare in modo programmatico la propria innovazione in modo tale da poter essere competitivi sul mercato. In molti casi, questo e significa investire una cospicua somma di denaro in progetti che andranno a migliorare aspetti essenziali del prodotto o del servizio e che avranno un importante impatto sulla trasformazione digitale dell’azienda. Lo studio che viene proposto riguarda in particolar modo due approcci che sono tipicamente in antitesi tra loro proprio per il fatto che si basano su due tipologie di dati differenti, i Big Data e i Thick Data. I due approcci sono rispettivamente il Data Science e il Design Thinking. Nel corso dei seguenti capitoli, dopo aver definito gli approcci di Design Thinking e Data Science, verrà definito il concetto di blending e la problematica che ruota attorno all’intersezione dei due metodi di innovazione. Per mettere in evidenza i diversi aspetti che riguardano la tematica, verranno riportati anche casi di aziende che hanno integrato i due approcci nei loro processi di innovazione, ottenendo importanti risultati. In particolar modo verrà riportato il lavoro di ricerca svolto dall’autore riguardo l'esame, la classificazione e l'analisi della letteratura esistente all'intersezione dell'innovazione guidata dai dati e dal pensiero progettuale. Infine viene riportato un caso aziendale che è stato condotto presso la realtà ospedaliero-sanitaria di Parma in cui, a fronte di una problematica relativa al rapporto tra clinici dell’ospedale e clinici del territorio, si è progettato un sistema innovativo attraverso l’utilizzo del Design Thinking. Inoltre, si cercherà di sviluppare un’analisi critica di tipo “what-if” al fine di elaborare un possibile scenario di integrazione di metodi o tecniche provenienti anche dal mondo del Data Science e applicarlo al caso studio in oggetto.
Resumo:
To subjectively and objectively compare an accessible interactive electronic library using Moodle with lectures for urology teaching of medical students. Forty consecutive fourth-year medical students and one urology teacher were exposed to two teaching methods (4 weeks each) in the form of problem-based learning: - lectures and - student-centered group discussion based on Moodle (modular object-oriented dynamic learning environment) full time online delivered (24/7) with video surgeries, electronic urology cases and additional basic principles of the disease process. All 40 students completed the study. While 30% were moderately dissatisfied with their current knowledge base, online learning course delivery using Moodle was considered superior to the lectures by 86% of the students. The study found the following observations: (1) the increment in learning grades ranged from 7.0 to 9.7 for students in the online Moodle course compared to 4.0-9.6 to didactic lectures; (2) the self-reported student involvement in the online course was characterized as large by over 60%; (3) the teacher-student interaction was described as very frequent (50%) and moderately frequent (50%); and (4) more inquiries and requisitions by students as well as peer assisting were observed from the students using the Moodle platform. The Moodle platform is feasible and effective, enthusing medical students to learn, improving immersion in the urology clinical rotation and encouraging the spontaneous peer assisted learning. Future studies should expand objective evaluations of knowledge acquisition and retention.
Resumo:
Process Analytical Chemistry (PAC) is an important and growing area in analytical chemistry, that has received little attention in academic centers devoted to the gathering of knowledge and to optimization of chemical processes. PAC is an area devoted to optimization and knowledge acquisition of chemical processes, to reducing costs and wastes and to making an important contribution to sustainable development. The main aim of this review is to present to the Brazilian community the development and state of the art of PAC, discussing concepts, analytical techniques currently employed in the industry and some applications.
Resumo:
O objetivo deste trabalho foi estudar o desenvolvimento de conceitos por cegos congênitos. Participaram sete cegos congênitos, de ambos os sexos, com idades entre 8 e 13 anos. Foi solicitado aos participantes que definissem 15 conceitos, subdivididos em concretos e abstratos. As respostas foram agrupadas em 13 categorias. Verificou-se que cada tipo de conceito envolve formas diferenciadas de definição e de utilização de recursos perceptivos. Foram identificados alguns meios utilizados pelo cego congênito na aquisição do conhecimento, evidenciando a multiplicidade de possibilidades de aquisição e expressão de conceitos. As implicações deste trabalho para o processo de ensino/aprendizagem de cegos foram consideradas.
Resumo:
Este artigo analisa a cegueira, os preconceitos a ela associados e as potencialidades de pessoas cegas, especialmente do aluno cego. Salienta a ênfase dada ao sentido da visão no processo de aquisição de conhecimentos e considera os preconceitos comumente associados à capacidade de aprendizagem do cego.
Resumo:
The purpose of this study was to assess the benefits of using e-learning resources in a dental training course on Atraumatic Restorative Treatment (ART). This e-course was given in a DVD format, which presented the ART technique and philosophy. The participants were twenty-four dentists from the Brazilian public health system. Prior to receiving the DVD, the dentists answered a questionnaire regarding their personal data, previous knowledge about ART, and general interest in training courses. The dentists also participated in an assessment process consisting of a test applied before and after the course. A single researcher corrected the tests, and intraexaminer reproducibility was calculated (kappa=0.89). Paired t-tests were carried out to compare the means between the assessments, showing a significant improvement in the performance of the subjects on the test taken after the course (p<0.05). A linear regression model was used with the difference between the means as the outcome. A greater improvement on the test results was observed among female dentists (p=0.034), dentists working for a shorter period of time in the public health system (p=0.042), and dentists who used the ART technique only for urgent and/or temporary treatment (p=0.010). In conclusion, e-learning has the potential of improving the knowledge that dentists working in the public health system have about ART, especially those with less clinical experience and less knowledge about the subject.
Resumo:
Eight different models to represent the effect of friction in control valves are presented: four models based on physical principles and four empirical ones. The physical models, both static and dynamic, have the same structure. The models are implemented in Simulink/Matlab (R) and compared, using different friction coefficients and input signals. Three of the models were able to reproduce the stick-slip phenomenon and passed all the tests, which were applied following ISA standards. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with excellent properties. The approach is in- spired by the principles of the generalized cross entropy method. The pro- posed density estimation procedure has numerous advantages over the tra- ditional kernel density estimator methods. Firstly, for the first time in the nonparametric literature, the proposed estimator allows for a genuine incor- poration of prior information in the density estimation procedure. Secondly, the approach provides the first data-driven bandwidth selection method that is guaranteed to provide a unique bandwidth for any data. Lastly, simulation examples suggest the proposed approach outperforms the current state of the art in nonparametric density estimation in terms of accuracy and reliability.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved