945 resultados para DIRECT ELECTRON-TRANSFER


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Influence of core property on multi-electron process in the collisions of q = 6-9 and 11 isocharged sequence ions with Ne is investigated in the keV/u region The cross-section ratios of double-, triple-, quadruple- and total multi-electron processes to the single electron capture process as well as the partial ratios of different reaction channels to the relevant multi-electron process are measured by using position-sensitive and time-of-flight techniques The experimental data are compared with the theoretical predictions including the extended classical over-barrier model, the molecular Columbic barrier model and the semi-empirical scaling law Results show a core effect on multi-electron process of isocharge ions colliding with Neon, which is consistent with the results of Helium we obtained previously

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spherical gold nanoparticles (3-5 nm) undergo a surprising fragmentation without extra energy imput and are converted into ultrasmall particles (less than 1.5 nm), which is a direct result of electron transfer between gold nanoparticles and cysteine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relationship between charge transfer energies E-CT of Yb3+ and Sm3+ and environmental factors h(e) in various crystals was investigated using a dielectric chemical bond method. Both results show that they have an exponential relation E-CT = A+B exp(-kh(e)), but the exponential factors are different, which indicates that the interaction between the rare earth ions and environment is connected with the kind of rare earth ion. This result provides a method of determining charge transfer energies of Yb3+ and Sm3+ from a crystal structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dielectric definition of average energy gap E-g of the chemical bond has been calculated quantitatively in Eu3+-doped 30 lanthanide compounds based on the dielectric theory of chemical bond for complex structure crystals. The relationship between the experimental charge transfer (CT) energy of Eu3+ and the corresponding average energy gap E-g has been studied. The results show that the CT energy increases linearly with increasing of the average energy gap E-g. The linear model is obtained. It allows us to predict the CT position of Eu3+-doped lanthanide compounds with knowledge of the crystal structure and index of refraction. Applied to the Ca4GdO(BO3)(3):Eu and Li2Lu5O4(BO3)(3):Eu crystals, the predicted results of CT energies are in good agreement with the experimental values, and it can be concluded that the lowest CT energy in Li2Lu5O4(BO3)(3):Eu originates from the site of Lu1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: -0.2 V) was from 1.67 x 10(-5) to 7.40 x 10(-4) M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the charge transfer across the micro-liquid/liquid interface supported at the orifice of a double-barrel micropipette, namely, a theta-pipette, is reported. Simple ion transfer(TMA(+)), facilitated ion transfer (potassium ion transfer facilitated by DB18C6), and electron transfer (ferrocene and ferri/ferrocyanide system) have been investigated by cyclic voltammetry. The experimental results show that a very thin aqueous film, linking both barrels filled with the aqueous solution and the organic solution respectively, can spontaneously be formed on the outer glass surface of such a double-barrel micropipette to construct a micro-liquid/liquid interface, which provides the asymmetry of diffusion field. Such device is demonstrated experimentally which can be employed as one of the simplest electrochemical cells to investigate the charge transfer across the liquid/liquid interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.