869 resultados para Cox regression
Resumo:
Background: Several models have been designed to predict survival of patients with heart failure. These, while available and widely used for both stratifying and deciding upon different treatment options on the individual level, have several limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time. Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known to be independent predictors of overall mortality in this clinical setting. Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and variations of the Cox's model and also of the Aalen's additive model. Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age, serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time. Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may reduce bias and increase the specificity of such models.
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.
Resumo:
Hierarchically clustered populations are often encountered in public health research, but the traditional methods used in analyzing this type of data are not always adequate. In the case of survival time data, more appropriate methods have only begun to surface in the last couple of decades. Such methods include multilevel statistical techniques which, although more complicated to implement than traditional methods, are more appropriate. ^ One population that is known to exhibit a hierarchical structure is that of patients who utilize the health care system of the Department of Veterans Affairs where patients are grouped not only by hospital, but also by geographic network (VISN). This project analyzes survival time data sets housed at the Houston Veterans Affairs Medical Center Research Department using two different Cox Proportional Hazards regression models, a traditional model and a multilevel model. VISNs that exhibit significantly higher or lower survival rates than the rest are identified separately for each model. ^ In this particular case, although there are differences in the results of the two models, it is not enough to warrant using the more complex multilevel technique. This is shown by the small estimates of variance associated with levels two and three in the multilevel Cox analysis. Much of the differences that are exhibited in identification of VISNs with high or low survival rates is attributable to computer hardware difficulties rather than to any significant improvements in the model. ^
Resumo:
Objectives. Triple Negative Breast Cancer (TNBC) lack expression of estrogen receptors (ER), progesterone receptors (PR), and absence of Her2 gene amplification. Current literature has identified TNBC and over-expression of cyclo-oxygenase-2 (COX-2) protein in primary breast cancer to be independent markers of poor prognosis in terms of overall and distant disease free survival. The purpose of this study was to compare COX-2 over-expression in TNBC patients to those patients who expressed one or more of the three tumor markers (i.e. ER, and/or PR, and/or Her2).^ Methods. Using a secondary data analysis, a cross-sectional design was implemented to examine the association of interest. Data collected from two ongoing protocols titled "LAB04-0657: a model for COX-2 mediated bone metastasis (Specific aim 3)" and "LAB04-0698: correlation of circulating tumor cells and COX-2 expression in primary breast cancer metastasis" was used for analysis. A sample of 125 female patients was analyzed using Chi-square tests and logistic regression models. ^ Results. COX-2 over-expression was present in 33% (41/125) and 28% (35/124) patients were identified as having TNBC. TNBC status was associated with elevated COX-2 expression (OR= 3.34; 95% CI= 1.40–8.22) and high tumor grade (OR= 4.09; 95% CI= 1.58–10.82). In a multivariable analysis, TNBC status was an important predictor of COX-2 expression after adjusting for age, menopausal status, BMI, and lymph node status (OR= 3.31; 95% CI: 1.26–8.67; p=0.01).^ Conclusion. TNBC is associated with COX-2 expression—a known marker of poor prognosis in patients with operable breast cancer. Replication of these results in a study with a larger sample size, or a future randomized clinical trial demonstrating an improved prognosis with COX-2 suppression in these patients would support this hypothesis.^
Resumo:
The standard analyses of survival data involve the assumption that survival and censoring are independent. When censoring and survival are related, the phenomenon is known as informative censoring. This paper examines the effects of an informative censoring assumption on the hazard function and the estimated hazard ratio provided by the Cox model.^ The limiting factor in all analyses of informative censoring is the problem of non-identifiability. Non-identifiability implies that it is impossible to distinguish a situation in which censoring and death are independent from one in which there is dependence. However, it is possible that informative censoring occurs. Examination of the literature indicates how others have approached the problem and covers the relevant theoretical background.^ Three models are examined in detail. The first model uses conditionally independent marginal hazards to obtain the unconditional survival function and hazards. The second model is based on the Gumbel Type A method for combining independent marginal distributions into bivariate distributions using a dependency parameter. Finally, a formulation based on a compartmental model is presented and its results described. For the latter two approaches, the resulting hazard is used in the Cox model in a simulation study.^ The unconditional survival distribution formed from the first model involves dependency, but the crude hazard resulting from this unconditional distribution is identical to the marginal hazard, and inferences based on the hazard are valid. The hazard ratios formed from two distributions following the Gumbel Type A model are biased by a factor dependent on the amount of censoring in the two populations and the strength of the dependency of death and censoring in the two populations. The Cox model estimates this biased hazard ratio. In general, the hazard resulting from the compartmental model is not constant, even if the individual marginal hazards are constant, unless censoring is non-informative. The hazard ratio tends to a specific limit.^ Methods of evaluating situations in which informative censoring is present are described, and the relative utility of the three models examined is discussed. ^
Resumo:
Replication forks are halted by many types of DNA damage. At the site of a leading-strand DNA lesion, forks may stall and leave the lesion in a single-strand gap. Fork regression is the first step in several proposed pathways that permit repair without generating a double-strand break. Using model DNA substrates designed to mimic one of the known structures of a fork stalled at a leading-strand lesion, we show here that RecA protein of Escherichia coli will promote a fork regression reaction in vitro. The regression process exhibits an absolute requirement for ATP hydrolysis and is enhanced when dATP replaces ATP. The reaction is not affected by the inclusion of the RecO and R proteins. We present this reaction as one of several potential RecA protein roles in the repair of stalled and/or collapsed replication forks in bacteria.
Resumo:
Benefit finding is a meaning making construct that has been shown to be related to adjustment in people with MS and their carers. This study investigated the dimensions, stability and potency of benefit finding in predicting adjustment over a 12 month interval using a newly developed Benefit Finding in Multiple Sclerosis Scale (BFiMSS). Usable data from 388 persons with MS and 232 carers was obtained from questionnaires completed at Time 1 and 12 months later (Time 2). Factor analysis of the BFiMSS revealed seven psychometrically sound factors: Compassion/Empathy, Spiritual Growth, Mindfulness, Family Relations Growth, Life Style Gains, Personal Growth, New Opportunities. BFiMSS total and factors showed satisfactory internal and retest reliability coefficients, and convergent, criterion and external validity. Results of regression analyses indicated that the Time 1 BFiMSS factors accounted for significant amounts of variance in each of the Time 2 adjustment outcomes (positive states of mind, positive affect, anxiety, depression) after controlling for Time 1 adjustment, and relevant demographic and illness variables. Findings delineate the dimensional structure of benefit finding in MS, the differential links between benefit finding dimensions and adjustment and the temporal unfolding of benefit finding in chronic illness.
Resumo:
Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.
Resumo:
Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.
Resumo:
Objective To describe quality of life (QOL) over a 12-month period among women with breast cancer, consider the association between QOL and overall survival (OS), and explore characteristics associated with QOL declines. Methods A population-based sample of Australian women (n=287) with invasive, unilateral breast cancer (Stage I+), was observed prospectively for a median of 6.6 years. QOL was assessed at six, 12 and 18 months post-diagnosis, using the Functional Assessment of Cancer Therapy, Breast (FACT-B+4) questionnaire. Raw scores for the FACT-B+4 and subscales were computed and individuals were categorized according to whether QOL declined, remained stable or improved between six and 18 months. Kaplan-Meier and Cox proportional hazards survival methods were used to estimate OS and its associations with QOL. Logistic regression models identified factors associated with QOL decline. Results Within FACT-B+4 sub-scales, between 10% and 23% of women showed declines in QOL. Following adjustment for established prognostic factors, emotional wellbeing and FACT-B+4 scores at six months post-diagnosis were associated with OS (p<0.05). Declines in physical (p<0.01) or functional (p=0.02) well-being between six and 18 months post-diagnosis were also associated significantly with OS. Receiving multiple forms of adjuvant treatment, a perception of not handling stress well and reporting one or more other major life events at six months post-diagnosis were factors associated with declines in QOL in multivariable analyses. Conclusions Interventions targeted at preventing QOL declines may ultimately improve quantity as well as quality of life following breast cancer.