945 resultados para Combinatorial optimization algorithms


Relevância:

40.00% 40.00%

Publicador:

Resumo:

En nuestro proyecto anterior aproximamos el cálculo de una integral definida con integrandos de grandes variaciones funcionales. Nuestra aproximación paraleliza el algoritmo de cómputo de un método adaptivo de cuadratura, basado en reglas de Newton-Cote. Los primeros resultados obtenidos fueron comunicados en distintos congresos nacionales e internacionales; ellos nos permintieron comenzar con una tipificación de las reglas de cuadratura existentes y una clasificación de algunas funciones utilizadas como funciones de prueba. Estas tareas de clasificación y tipificación no las hemos finalizado, por lo que pretendemos darle continuidad a fin de poder informar sobre la conveniencia o no de utilizar nuestra técnica. Para llevar adelante esta tarea se buscará una base de funciones de prueba y se ampliará el espectro de reglas de cuadraturas a utilizar. Además, nos proponemos re-estructurar el cálculo de algunas rutinas que intervienen en el cómputo de la mínima energía de una molécula. Este programa ya existe en su versión secuencial y está modelizado utilizando la aproximación LCAO. El mismo obtiene resultados exitosos en cuanto a precisión, comparado con otras publicaciones internacionales similares, pero requiere de un tiempo de cálculo significativamente alto. Nuestra propuesta es paralelizar el algoritmo mencionado abordándolo al menos en dos niveles: 1- decidir si conviene distribuir el cálculo de una integral entre varios procesadores o si será mejor distribuir distintas integrales entre diferentes procesadores. Debemos recordar que en los entornos de arquitecturas paralelas basadas en redes (típicamente redes de área local, LAN) el tiempo que ocupa el envío de mensajes entre los procesadores es muy significativo medido en cantidad de operaciones de cálculo que un procesador puede completar. 2- de ser necesario, paralelizar el cálculo de integrales dobles y/o triples. Para el desarrollo de nuestra propuesta se desarrollarán heurísticas para verificar y construir modelos en los casos mencionados tendientes a mejorar las rutinas de cálculo ya conocidas. A la vez que se testearán los algoritmos con casos de prueba. La metodología a utilizar es la habitual en Cálculo Numérico. Con cada propuesta se requiere: a) Implementar un algoritmo de cálculo tratando de lograr versiones superadoras de las ya existentes. b) Realizar los ejercicios de comparación con las rutinas existentes para confirmar o desechar una mejor perfomance numérica. c) Realizar estudios teóricos de error vinculados al método y a la implementación. Se conformó un equipo interdisciplinario integrado por investigadores tanto de Ciencias de la Computación como de Matemática. Metas a alcanzar Se espera obtener una caracterización de las reglas de cuadratura según su efectividad, con funciones de comportamiento oscilatorio y con decaimiento exponencial, y desarrollar implementaciones computacionales adecuadas, optimizadas y basadas en arquitecturas paralelas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Habil.-Schr., 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]This works aims at assessing the acoustic efficiency of differente this noise barrier models. These designs frequently feature complex profiles and their implementarion in shape optimization processes may not always be easy in terms of determining their topological feasibility. A methodology to conduct both overall shape and top edge optimisations of thin cross section acoustic barriers by idealizing them as profiles with null boundary thickness is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.