867 resultados para Collision avoidance, Human robot cooperation, Mobile robot sensor placement
Resumo:
In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.
Resumo:
DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS(Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.
Resumo:
A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.
Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.
Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with
little or no prior knowledge
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (AIS) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a Reinforcement Learning based control system (RL) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.
Resumo:
Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (AIS) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a Reinforcement Learning based control system (RL) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.
Resumo:
In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.
Resumo:
I vantaggi dell’Industria 4.0 hanno stravolto il manufacturing. Ma cosa vuol dire "Industria 4.0"? Essa è la nuova frontiera del manufacturing, basata su princìpi che seguono i passi avanti dei sistemi IT e della tecnologia. Dunque, i suoi pilastri sono: integrazione, verticale e orizzontale, digitalizzazione e automazione. L’Industria 4.0 coinvolge molte aree della supply chain, dai flussi informativi alla logistica. In essa e nell’intralogistica, la priorità è sviluppare dei sistemi di material handling flessibili, automatizzati e con alta prontezza di risposta. Il modello ideale è autonomo, in cui i veicoli fanno parte di una flotta le cui decisioni sono rese decentralizzate grazie all'alta connettività e alla loro abilità di collezionare dati e scambiarli rapidamente nel cloud aziendale.Tutto ciò non sarebbe raggiungibile se ci si affidasse a un comune sistema di trasporto AGV, troppo rigido e centralizzato. La tesi si focalizza su un tipo di material handlers più flessibile e intelligente: gli Autonomous Mobile Robots. Grazie alla loro intelligenza artificiale e alla digitalizzazione degli scambi di informazioni, interagiscono con l’ambiente per evitare ostacoli e calcolare il percorso ottimale. Gli scenari dell’ambiente lavorativo determinano perdite di tempo nel tragitto dei robot e sono queste che dovremo studiare. Nella tesi, i vantaggi apportati dagli AMR, come la loro decentralizzazione delle decisioni, saranno introdotti mediante una literature review e poi l’attenzione verterà sull’analisi di ogni scenario di lavoro. Fondamentali sono state le esperienze nel Logistics 4.0 Lab di NTNU, per ricreare fisicamente alcuni scenari. Inoltre, il software AnyLogic sarà usato per riprodurre e simulare tutti gli scenari rilevanti. I risultati delle simulazioni verranno infine usati per creare un modello che associ ad ogni scenario rilevante una perdita di tempo, attraverso una funzione. Per questo saranno usati software di data analysis come Minitab e MatLab.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.
Resumo:
The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.