940 resultados para Chronic Myeloid Leukemia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Essential thrombocythaemia (ET) is a myeloproliferative disease (MPD) characterized by thrombocytosis, i.e. a constant elevation of platelet count. Thrombocytosis may appear in MPDs (ET, polycythaemia vera, chronic myeloid leukaemia, myelofibrosis) and as a reactive phenomenon. The differential diagnosis of thrombocytosis is important, because the clinical course, need of therapy, and prognosis are different in patients with MPDs and in those with reactive thrombocytosis. ET patients may remain asymptomatic for years, but serious thrombohaemorrhagic and pregnancy-related complications may occur. The complications are difficult to predict. The aims of the present study were to evaluate the diagnostic findings, clinical course, and prognostic factors of ET. The present retrospective study consists of 170 ET patients. Two thirds had a platelet count < 1000 x 109/l. The diagnosis was supported by an increased number of megakaryocytes with an abnormal morphology in a bone marrow aspirate, aggregation defects in platelet function studies, and the presence of spontaneous erythroid and/or megakaryocytic colony formation in in vitro cultures of haematopoietic progenitors. About 70 % of the patients had spontaneous colony formation, while about 30 % had a normal growth pattern. Only a fifth of the patients remained asymptomatic. Half had a major thrombohaemorrhagic complication. The proportion of the patients suffering from thrombosis was as high as 45 %. About a fifth had major bleedings. Half of the patients had microvascular symptoms. Age over 60 years increased the risk of major bleedings, but the occurrence of thrombotic complications was similar in all age groups. Male gender, smoking in female patients, the presence of any spontaneous colony formation, and the presence of spontaneous megakaryocytic colony formation in younger patients were identified as risk factors for thrombosis. Pregnant ET patients had an increased risk of complications. Forty-five per cent of the pregnancies were complicated and 38 % of them ended in stillbirth. Treatment with acetylsalicylic acid alone or in combination with platelet lowering drugs improved the outcome of the pregnancy. The present findings about risk factors in ET as well as treatment outcome in the pregnancies of ET patients should be taken into account when planning treatment strategies for Finnish patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the trans-activation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: U19/EAF2 is a potential tumor suppressor exhibiting frequent down-regulation and allelic loss in advanced human prostate cancer specimens. U 19/EAF2 has also been identified as ELL-associated factor 2 (EAF2) based on its binding to ELL, a fusion partner of MLL in acute myeloid leukemia. U19/EAF2 is a putative transcription factor with a transactivation domain and capability of sequence-specific DNA binding. Methods: Yeast-two-hybrid-screening was used to identify U19/EAF2-binding partners. Co-immunoprecipitation and mammalian 1-hybrid assay were used to characterize a U19/EAF2-binding partner. Results: FB1, an E2A fusion partner in childhood leukemia, was identified as a binding-partner of U19/EAF2. FB1 also binds to EAF1, the only homologue of U19/EAF2. FB1 also interacts and co-localizes with ELL in the nucleus. Interestingly, FB1 inhibited the transcriptional activity of U19/EAF2 but not EAF1. Conclusions: FB1 is an important binding partner and a functional regulator of U19/EAF2, EAF1, and/or ELL. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute myeloid leukaemia refers to cancer of the blood and bone marrow characterised by the rapid expansion of immature blasts of the myeloid lineage. The aberrant proliferation of these blasts interferes with normal haematopoiesis, resulting in symptoms such as anaemia, poor coagulation and infections. The molecular mechanisms underpinning acute myeloid leukaemia are multi-faceted and complex, with a range of diverse genetic and cytogenetic abnormalities giving rise to the acute myeloid leukaemia phenotype. Amongst the most common causative factors are mutations of the FLT3 gene, which codes for a growth factor receptor tyrosine kinase required by developing haematopoietic cells. Disruptions to this gene can result in constitutively active FLT3, driving the de-regulated proliferation of undifferentiated precursor blasts. FLT3-targeted drugs provide the opportunity to inhibit this oncogenic receptor, but over time can give rise to resistance within the blast population. The identification of targetable components of the FLT3 signalling pathway may allow for combination therapies to be used to impede the emergence of resistance. However, the intracellular signal transduction pathway of FLT3 is relatively obscure. The objective of this study is to further elucidate this pathway, with particular focus on the redox signalling element which is thought to be involved. Signalling via reactive oxygen species is becoming increasingly recognised as a crucial aspect of physiological and pathological processes within the cell. The first part of this study examined the effects of NADPH oxidase-derived reactive oxygen species on the tyrosine phosphorylation levels of acute myeloid leukaemia cell lines. Using two-dimensional phosphotyrosine immunoblotting, a range of proteins were identified as undergoing tyrosine phosphorylation in response to NADPH oxidase activity. Ezrin, a cytoskeletal regulatory protein and substrate of Src kinase, was selected for further study. The next part of this study established that NADPH oxidase is subject to regulation by FLT3. Both wild type and oncogenic FLT3 signalling were shown to affect the expression of a key NADPH oxidase subunit, p22phox, and FLT3 was also demonstrated to drive intracellular reactive oxygen species production. The NADPH oxidase target protein, Ezrin, undergoes phosphorylation on two tyrosine residues downstream of FLT3 signalling, an effect which was shown to be p22phox-dependent and which was attributed to the redox regulation of Src. The cytoskeletal associations of Ezrin and its established role in metastasis prompted the investigation of the effects of FLT3 and NADPH oxidase activity on the migration of acute myeloid leukaemia cell lines. It was found that inhibition of either FLT3 or NADPH oxidase negatively impacted on the motility of acute myeloid leukaemia cells. The final part of this study focused on the relationship between FLT3 signalling and phosphatase activity. It was determined, using phosphatase expression profiling and real-time PCR, that several phosphatases are subject to regulation at the levels of transcription and post-translational modification downstream of oncogenic FLT3 activity. In summary, this study demonstrates that FLT3 signal transduction utilises a NADPH oxidase-dependent redox element, which affects Src kinase, and modulates leukaemic cell migration through Ezrin. Furthermore, the expression and activity of several phosphatases is tightly linked to FLT3 signalling. This work reveals novel components of the FLT3 signalling cascade and indicates a range of potential therapeutic targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) and hepatitis B virus (HBV) have been associated with hematopoietic malignancies, but data for many subtypes are limited. From the U.S. Surveillance, Epidemiology, and End Results-Medicare database, we selected 61,464 cases (=67 years) with hematopoietic malignancies and 122,531 population-based controls, frequency-matched by gender, age, and year (1993-2002). Logistic regression was used to compare the prevalence of HCV, HBV, and alcoholic hepatitis in cases and controls, adjusted for matching factors, race, duration of Medicare coverage, and number of physician claims. HCV, HBV, and alcoholic hepatitis were reported in 195 (0.3%), 111 (0.2%), and 404 (0.7%) cases and 264 (0.2%), 242 (0.2%), and 798 (0.7%) controls, respectively. HCV was associated with increased risk of diffuse large B-cell lymphoma [odds ratio (OR) 1.52, 95% confidence interval (95% CI) 1.05-2.18], Burkitt lymphoma (OR 5.21, 95% CI 1.62-16.8), follicular lymphoma (OR 1.88, 95% CI 1.17-3.02), marginal zone lymphoma (OR 2.20, 95% CI 1.22-3.95), and acute myeloid leukemia (OR 1.54, 95% CI 1.00-2.37). In contrast, HBV was unrelated to any hematopoietic malignancies. Alcoholic hepatitis was associated with decreased risk of non-Hodgkin lymphoma overall, but increased risk of Burkitt lymphoma. In summary, HCV, but not other causes of hepatitis, was associated with the elevated risk of non-Hodgkin lymphoma and acute myeloid leukemia. HCV may induce lymphoproliferative malignancies through chronic immune stimulation. Copyright © 2008 American Association for Cancer Research.


--------------------------------------------------------------------------------

Reaxys Database Information|

--------------------------------------------------------------------------------

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research over the past decade has confirmed that epigenetic alterations act in concert with genetic lesions to deregulate gene expression in acute myeloid leukemia and myelodysplastic syndromes. In addition, we now have the capability to pharmaceutically target epigenetic modifications, and there is an urgent need forearly validation of the efficacy of the drugs. Also, an improved understanding of the functionality of epigenetic modifications may further pave the road towards an individualized therapy. Here, we provide the pros and cons of the currently most feasible methods used for characterizing the methylome in clinical samples, and give a brief introduction to novel approaches to sequencing that may revolutionize our abilities to characterize the genomes and epigenomes in acute myeloid leukemia and myelodysplastic syndrome patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis and therapeutic intervention based on improved patient stratification. Relevant pre-clinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML) and a conditional transplantation mouse model was developed that demonstrated oncogene-dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity Map (sscMap) analysis identified Entinostat as a drug with the potential to alter the leukemic condition towards the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML. © 2013 AlphaMed Press

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).

Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).

Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.

Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Antigenic stimulation is a proposed aetiologic mechanism for many haematological malignancies. Limited evidence suggests that community-acquired infections may increase the risk of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). However, associations with other myeloid malignancies including chronic myeloid leukaemia (CML) and myeloproliferative neoplasms (MPNs) are unknown.

Materials and methods: Using the Surveillance, Epidemiology and End Result (SEER)-Medicare database, fourteen community-acquired infections were compared between myeloid malignancy patients [AML (n=8489), CML (n=3626) diagnosed 1992-2005; MDS (n=3072) and MPNs (n=2001) diagnosed 2001-2005; and controls (200,000 for AML/CML and 97,681 for MDS/MPN]. Odds ratios (ORs) and 95% confidence intervals were adjusted for gender, age and year of selection excluding infections diagnosed in the 13-month period prior to selection to reduce reverse causality.

Results: Risk of AML and MDS respectively, were significantly associated with respiratory tract infections, bronchitis (ORs 1.20 [95% CI: 1.14-1.26], 1.25 [95% CI: 1.16-1.36]), influenza (ORs 1.16 [95% CI: 1.07-1.25], 1.29 [95% CI: 1.16-1.44]), pharyngitis (ORs 1.13 [95% CI: 1.06-1.21], 1.22 [95% CI: 1.11-1.35]), pneumonia (ORs 1.28 [95% CI: 1.21-1.36], 1.52 [95% CI: 1.40-1.66]), sinusitis (ORs 1.23 [95% CI: 1.16-1.30], 1.25 [95% CI: 1.15-1.36]) as was cystitis (ORs 1.13 [95% CI: 1.07-1.18], 1.26 [95% CI: 1.17-1.36]). Cellulitis (OR 1.51 [95% CI: 1.39-1.64]), herpes zoster (OR 1.31 [95% CI: 1.14-1.50]) and gastroenteritis (OR 1.38 [95% CI: 1.17-1.64]) were more common in MDS patients than controls. For CML, associations were limited to bronchitis (OR 1.21 [95% CI: 1.12-1.31]), pneumonia (OR 1.49 [95% CI: 1.37-1.62]), sinusitis (OR 1.19 [95% CI: 1.09-1.29]) and cellulitis (OR 1.43 [95% CI: 1.32-1.55]) following Bonferroni correction. Only cellulitis (OR 1.34 [95% CI: 1.21-1.49]) remained significant in MPN patients. Many infections remained elevated when more than 6 years of preceding claims data were excluded.

Discussion: Common community-acquired infections may be important in the malignant transformation of the myeloid lineage. Differences in the aetiology of classic MPNs and other myeloid malignancies require further exploration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photooxidative damage was induced predominantly at a single guanine base in a target DNA by irradiation (lambda > 330 nm) in the presence of complementary oligodeoxynucleotide conjugates (ODN-5'-linker-[Ru(phen)3]2+) (phen = 1,10-phenanthroline). The target DNA represents the b2a2 variant of the chimeric bcr-abl gene implicated in the pathogenesis of chronic myeloid leukaemia, and the sequence of the 17mer ODN component of the conjugate (3' G G T A G T T A T T C C T T C T T 5') was complementary to the junction region of the sense strand sequence of this oncogene. Two different conjugates were prepared, both of them by reaction of the appropriate succinimide ester with 5'-hexylamino-derivatised 17mer ODN. In Ru-ODN-1 (7) the linker was -(CH2)6-NHCO-bpyMe (-bpyMe = 4'-[4-methyl-2,2'-bipyridyl]), whereas in Ru-ODN-2 (13) it was -(CH2)6-NHCO-(CH2)3-CONH-phen. Photoexcitation of either of the conjugates when hybridised with the 32P-5'-end-labelled target 34mer 5'T G A C C A T C A A T A A G G A A G A A G21 C C C T T C A G C G G C C 3' (ODN binding site underlined) led to an alkali-labile site predominantly (> 90%) at the G21 base, which is at the junction of double-stranded and single-stranded regions of the hybrid. Greater yields were found with Ru-ODN-1 (7) than with Ru ODN-2 (13). In contrast to this specific cleavage with Ru-ODN-1 (7) or Ru-ODN-2 (13), alkali-labile sites were generated at all guanines when the 34mer was photolysed in the presence of the free sensitiser [Ru(phen)3]2+. Since [Ru(phen)3]2+ was shown to react with 2'-deoxyguanosine to form the diastereomers of a spiroiminodihydantoin derivative (the product from 1O2 reaction), 1O2 might also be an oxidizing species in the case of Ru-ODN-1 (7) and Ru-ODN-2 (13). Therefore to determine the range of reaction, a series of 'variant' targets was prepared, in which G21 was replaced with a cytosine and a guanine substituted for a base further towards the 3'-end (e.g. Variant 3; 5'T G A C C A T C A A T A A G G A A G A A C C G23 C T T C A G C G G32 C C3'). While it was noted that efficient reaction took place at distances apparently remote from the photosensitiser (e.g at G32, but not G23 for Variant 3), this effect could be attributed to hairpinning of the single-stranded region of the target. These results are therefore consistent with the photooxidative damage being induced by a reaction close to the photosensitiser rather than by a diffusible species such as 1O2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute leukaemias in relapse after allogeneic stem cell transplantation (SCT) respond poorly to donor leucocyte infusions (DLI) compared with chronic myeloid leukaemia (CML), at least in part because of faster disease kinetics. Fludarabine-containing 'non-myeloablative' chemotherapy followed by further allo SCT may offer more rapid and effective disease control. We report 14 patients with relapse after allo SCT for acute leukaemia [seven acute myeloid leukaemia (AML), five acute lymphoblastic leukaemia (ALL)] or refractory anaemia with excess blasts in transformation (RAEB-t, n = 2) treated with fludarabine, high-dose cytosine arabinoside (ara-C) and granulocyte colony-simulating factor (G-CSF) with (n = 10) or without (n = 2) idarubicin (FLAG +/- Ida) or DaunoXome (FLAG-X) (n = 2) and second allo SCT from the original donor. Donors were fully human leucocyte antigen (HLA) -matched in 13 cases with a single class A mismatch in one. Actuarial overall survival was 60% and disease-free survival was 26% at 58 months. Remissions after the second SCT were longer than those after the first bone marrow transplantation (BMT) in eight of the 13 assessable patients to date. Haematopoietic recovery was rapid. Transplants were well tolerated with no treatment-related deaths. The major complication was graft-versus-host disease (GvHD, acute >/= grade II-2 cases, chronic - eight cases, two limited, six extensive) although there have been no deaths attributable to this. FLAG +/- Ida and second allo SCT is a safe and useful approach and may be more effective than DLI in the treatment of acute leukaemias relapsing after conventional allo SCT.