966 resultados para Ceramic lasers
Resumo:
The purpose of this study was to test the hypothesis that mechanical polishing methods of ceramic surfaces allow similar superficial roughness to that of glazed surfaces. Twenty-five Vitadur Alpha ceramic discs (5 mm x 2 mm) were prepared according to the manufacturer's specifications. All specimens were glazed and randomly assigned to 5 groups (n=5), according to finishing and polishing protocols: G1: glazed (control); G2: diamond bur finishing; G3: G2 + silicon rubber tip polishing; G4: G3 + felt disc/diamond polishing paste; G5: G3 + felt disc impregnated with fine-particle diamond paste. Next, surface roughness means (Ra - μm) were calculated. Qualitative analysis was made by scanning electron microscopy. Surface roughness data were submitted to ANOVA and Tukey's test at 5% significance level. G1 and G4 were statistically similar (p>0.05). G2 presented the highest roughness means (p<0.05) followed by groups G3, G5, G4 and G1 in a decreasing order. The hypothesis was partially confirmed as only the mechanical polishing (G4) produced similar superficial roughness to that of surface glazing, although finishing and polishing are technically critical procedures.
Resumo:
Purpose: The aim of this study was to evaluate the fracture resistance of ceramic plates cemented to dentin as a function of the resin cement film thickness. Materials and Methods: Ceramic plates (1 and 2 mm thicknesses) were cemented to bovine dentin using resin composite cement. The film thicknesses used were approximately 100, 200, and 300 μm. Noncemented ceramic plates were used as control. Fracture loads (N) were obtained by compressing a steel indenter in the center of the ceramic plates. ANOVA and Tukey tests (α = 0.05) were used for each ceramic thickness to compare fracture loads among resin cement films used. Results: Mean fracture load (N) for 1-mm ceramic plates were: control - 26 (7); 100 μm - 743 (150); 200 μm - 865 (105); 300 μm - 982 (226). Test groups were significantly different from the control group; there was a statistical difference in fracture load between groups with 100 and 300 μm film thicknesses (p < 0.01). Mean fracture load for 2-mm ceramic plates were: control - 214 (111); 100 μm - 1096 (341); 200 μm - 1067 (226); 300 μm - 1351 (269). Tested groups were also significantly different from the control group (p < 0.01). No statistical difference was shown among different film thicknesses. Conclusions: Unluted specimens presented significantly lower fracture resistance than luted specimens. Higher cement film thickness resulted in increased fracture resistance for the 1-mm ceramic plates. Film thickness did not influence the fracture resistance of 2-mm porcelain plates. Copyright © 2007 by The American College of Prosthodontists.
Resumo:
This study aimed to evaluate the effect of surface glazing and polishing of yttrium-stabilized tetragonal zirconia polycrystal ceramic on early dental biofilm formation, as well as the effect of brushing on the removal of adhered bacteria. Two subjects used oral appliances with polished and glazed samples fixed to the right and left sides. After 20 minutes, 1 hour, and 6 hours, the subjects manually brushed the samples on the right side. The samples were analyzed using scanning electron microscopy. Granular material was verified on the samples, especially on irregular surfaces. After 1 hour, there was no significant difference between glazed and polished surfaces in terms of bacterial presence. However, glazed surfaces tended to accumulate more biofilm, and brushing did not completely remove the biofilm. Polished surfaces seem to present a lower tendency for biofilm formation. Int J Prosthodont 2007;20:419-422.
Resumo:
This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.
Resumo:
The purpose of this study was to evaluate the microtensile bond strength of a repair composite resin to a leucite-reinforced feldspathic ceramic (Omega 900, VITA) submitted to two surface conditionings methods: 1) etching with hydrofluoric acid + silane application or 2) tribochemical silica coating. The null hypothesis is that both surface treatments can generate similar bond strengths. Ten ceramic blocks (6x6x6 mm) were fabricated and randomly assigned to 2 groups (n=5), according to the conditioning method: G1- 10% hydrofluoric acid application for 2 min plus rinsing and drying, followed by silane application for 30 s; G2- airborne particle abrasion with 30 μm silica oxide particles (CoJet-Sand) for 20 s using a chairside air-abrasion device (CoJet System), followed by silane application for 5 min. Single Bond adhesive system was applied to the surfaces and light cured (40 s). Z-250 composite resin was placed incrementally on the treated ceramic surface to build a 6x6x6 mm block. Bar specimens with an adhesive area of approximately 1 ± 0.1 mm2 were obtained from the composite-ceramic blocks (6 per block and 30 per group) for microtensile testing. No statistically significant difference was observed between G1 (10.19 ± 3.1 MPa) and G2 (10.17 ± 3.1 MPa) (p=0.982) (Student's t test; á = 0.05). The null hypothesis was, therefore, accepted. In conclusion, both surface conditioning methods provided similar microtensile bond strengths between the repair composite resin and the ceramic. Further studies using long-term aging procedures should be conducted.
Resumo:
The interface formed between the metal and the porcelain of laser-welded Ni-Cr-Mo alloy was studied on a metallurgical basis. The characterization was carried out by using optical microscope, electron scan microscopy and X-ray dispersive spectroscopy techniques and mechanical three-point flexion tests, in the laser-welded region, with and without porcelain. The union of the porcelain with the alloy is possible only after the oxidation of the metallic surface and the subsequent application of a bonding agent known as opaque. The porcelain applied to the base metal and weld bead showed different behaviours - after the flexion test, the base metal showed cracks, while that in the weld bead broke away completely. It was noted that the region subjected to laser welding had lower adherence to the porcelain than the base metal region, due to microstructural refinement of the weld bead. These results can be shown by the X-ray dispersive spectroscopy carried out on the regions studied. The flexion tests demonstrated that the Ni-Cr-Mo alloy subject to laser welding had significant alterations in its mechanical properties after application of the porcelain.
Resumo:
A green ceramic tape micro heat exchanger was developed using LTCC technology. The device was designed by using a CAD software and 2D and 3D simulations using a CFD package (COMSOL Multiphysics) to evaluate the fluid behavior in the microchannels. The micro heat exchanger is composed of five thermal exchange plates in cross flow arrangement and two connecting plates; heat exchanger dimensions are 26 × 26 × 6 mm3. Preliminary tests were carried out to characterize the device both in atmospheric pressure and in vacuum. The same techniques used in vacuum technology were applied to check the rotameters and to prevent device leakages. Thermal performance of the micro heat exchanger was experimentally tested. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effect of thermocycling (TC) on the microtensile bond strength (microTBS) of two luting agents to feldspathic ceramic and to measure their film thickness (FT). For the microTBS test, sixteen blocks (6.4 x 6.4 x 4.8 mm) were fabricated using a feldspathic ceramic, etched with 10% hydrofluoric acid, rinsed and treated with the silane agent. The ceramic blocks were divided into two groups (n= 8): Gr1: dual-cured resin cement and Gr2: flowable resin. The luting agents were applied on the treated surfaces. Microsticks (1 +/-0. 1mm2) were prepared and stored under two conditions: dry, specimens immediately submitted to the microTBS test, and TC (6,000 cycles; 5 degrees C-55 degrees C). The microTBS was evaluated using a universal testing machine (1 mm/min). The microTBS data (MPa) were submitted to two-way ANOVA and Tukey' test (5%). For the FT test (ISO 4049), 0.05 ml of each luting agent (n=8) was pressed between two Mylar-covered glass plates (150 N) for 180 seconds and light polymerized. FT was measured using a digital paquimeter (Model 727-2001). The data (mm) were submitted to one-way ANOVA. The luting cement did not influence the microTBS results (p= 0.4467). Higher microtensile bond values were found after TC (20.5 +/- 8.6 MPa) compared to the dry condition (13.9 +/- 4. 7MPa), for both luting agents. The luting agents presented similar film thicknesses: Gr1- 0.052 +/- 0.016 mm; Gr2-0.041 +/- 0.003 mm. The luting agents presented similar film thickness and microTBS values, in dry and TC conditions and TC increased the bond strength regardless of the luting agent.
Resumo:
Sr0.5Ba0.5Bi2Nb2O 9 ceramic was prepared by a conventional solid state reaction method and studied using X-ray powder diffraction and dielectric measurements. At room temperature, an orthorhombic structure was confirmed and their parameters were obtained using the Rietveld method. Dielectric properties were studied in a broad range of temperatures and frequencies. Typical relaxor behaviour was observed with strong dispersion of the complex relative dielectric permittivity. The temperature of the maximum dielectric constant Tm decreases with increasing frequency, and shifts towards higher temperature side. The activation energy Ea≈0·194±0·03 eV and freezing temperature Ta≈371±2 K values were found using the Vogel-Fulcher relationship. Conduction process in the material may be due to the hopping of charge carriers at low temperatures and small polarons and/or singly ionised oxygen vacancies at higher temperatures. © 2010 Maney Publishing.
Resumo:
This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 oC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.
Resumo:
The aim of this study was to assess the effect of bleaching agents (10% and 16% carbamide peroxide) on the roughness of two dental ceramics in vitro, and to analyze the surface by scanning electronic microscopy (SEM). Two bleaching agents (10% and 16%/Whiteness, FGM Gel) and two microparticle feldspathic ceramics (Vita VM7 and Vita VM13) were used. Forty disks of Vita VM7 and Vita VM13 ceramic were manufactured, measuring 4 mm in diameter and 4 mm high, in accordance with the manufacturers' recommendations, and were divided into 4 groups (n = 10): (1) VM7 + Whiteness 10%; (2) VM7 + Whiteness 16%; (3) VM13 + Whiteness 10%; (4) VM13 + Whiteness 16%. The bleaching agent was applied for 8 hours a day for 15 days and during the intervals the test specimens were stored in distilled water at 37 degrees C. The roughness (Ra) of the test specimens was evaluated before and after exposure to the bleaching agents using a laser roughness meter and the topographic description was analyzed by SEM. The statistical analysis of roughness data showed significant differences in the VM7 groups, using paired t-test, p = 0.05 (VM7 + Whiteness 10%: p = 0.002; VM7 + Whiteness 16%: p = 0.001) and two-sample t-test (VM7 p = 0.047), and no significant difference was found among VM13 groups. The qualitative SEM analysis showed different degrees of surface changes. The results suggest that the roughness of the tested ceramic surfaces increased after exposure to the bleaching agents.
Resumo:
Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.
Resumo:
This study evaluated, by scanning electron microscope (SEM) and EDS, the effect of different strategies for silica coating (sandblasters, time and distance) of a glass-infiltrated ceramic (In-Ceram Alumina). Forty-one ceramic blocks were produced. For comparison of the three air-abrasion devices, 15 ceramic samples were divided in three groups (N.=5): Bioart, Microetcher and Ronvig (air-abrasion parameters: 20 s at a distance of 10 mm). For evaluation of the time and distance factors, ceramic samples (N.=5) were allocated in groups considering three applied times (5 s, 13 s and 20 s) and two distances (10 mm and 20 mm), using the Ronvig device. In a control sample, no surface treatment was performed. After that, the micro-morphologic analyzes of the ceramic surfaces were made using SEM. EDS analyzes were carried out to detect the % of silica on representative ceramic surface. ANOVA and Tukey tests were used to analyze the results. One-way ANOVA showed the silica deposition was different for different devices (P=0.0054). The Ronvig device promoted the highest silica coating compared to the other devices (Tukey test). Two-way ANOVA showed the distance and time factors did not affect significantly the silica deposition (application time and distance showed no statistical difference). The Ronvig device provided the most effective silica deposition on glass-infiltrated alumina ceramic surface and the studied time and distance for air-abrasion did not affect the silica coating.
Resumo:
The aim of this study was to examine the effect of different acid etching times on the surface roughness and flexural strength of a lithium disilicate-based glass ceramic. Ceramic bar-shaped specimens (16 mm x 2 mm x 2 mm) were produced from ceramic blocks. All specimens were polished and sonically cleaned in distilled water. Specimens were randomly divided into 5 groups (n=15). Group A (control) no treatment. Groups B-E were etched with 4.9% hydrofluoric acid (HF) for 4 different etching periods: 20 s, 60 s, 90 s and 180 s, respectively. Etched surfaces were observed under scanning electron microscopy. Surface profilometry was used to examine the roughness of the etched ceramic surfaces, and the specimens were loaded to failure using a 3-point bending test to determine the flexural strength. Data were analyzed using one-way ANOVA and Tukey's test (α=0.05). All etching periods produced significantly rougher surfaces than the control group (p<0.05). Roughness values increased with the increase of the etching time. The mean flexural strength values were (MPa): A=417 ± 55; B=367 ± 68; C=363 ± 84; D=329 ± 70; and E=314 ± 62. HF etching significantly reduced the mean flexural strength as the etching time increased (p=0.003). In conclusion, the findings of this study showed that the increase of HF etching time affected the surface roughness and the flexural strength of a lithium disilicate-based glass ceramic, confirming the study hypothesis.