991 resultados para Center manifold reduction
Resumo:
Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Resumo:
This study describes a field experiment assessing the effectiveness of education and technological innovation in reducing air pollution generated by domestic wood heaters. Two-hundred and twenty four households from a small regional center in Australia were randomly assigned to one of four experimental conditions: (1) Education only – households received a wood smoke reduction education pack containing information about the negative health impacts of wood smoke pollution, and advice about wood heater operation and firewood management; (2) SmartBurn only – households received a SmartBurn canister designed to improve combustion and help wood fires burn more efficiently, (3) Education and SmartBurn, and (4) neither Education nor SmartBurn (control). Analysis of covariance, controlling for pre-intervention household wood smoke emissions, wood moisture content, and wood heater age, revealed that education and SmartBurn were both associated with significant reduction in wood smoke emissions during the post-intervention period. Follow-up mediation analyses indicated that education reduced emissions by improving wood heater operation practices, but not by increasing health risk perceptions. As predicted, SmartBurn exerted a direct effect on emission levels, unmediated by wood heater operation practices or health risk perceptions.
Resumo:
Purpose: To investigate effects of pupil shifts, occurring with changes in luminance and accommodation stimuli, on refraction components and higher-order aberrations. Method: Participants were young and older groups (n=20, 22±2 years, age range 18–25 years; n=19, 49±4 years, 45–58 years). Aberrations/refractions at 4 mm and 3 mm diameters were compared between centered and decentered pupils for low (background 0.01cd/m², 0D), and high (6100cd/m², 4D or 6D) stimuli. Decentration was the difference between pupil centers for low and high stimuli. Clinical important changes with decentration were: M ±0.50D or ±0.25D, J180 and J45 ±0.25D or ±0.125D, HORMS ±0.05m, C(3, 1) ±0.05m, C(4, 0) ±0.05m. Results: Because of small pupil shifts in most participants (mean 0.26mm), there were few important changes in most refraction components and higher-order aberration terms. However, M changed by >0.25 D for a third of participants with 4mm pupils. When determining refractions from 2nd-6th order aberration coefficients, the more stringent criteria gave 76/ 534 (14%) possible important changes. Some participants had large pupil shifts with considerable aberration changes. Comparisons at the high stimulus were possible for only 11 participants because of small pupils. When refractions were determined from 2nd order aberration coefficients only, there were only 35 (7%) important changes for the more stringent criteria. Conclusion: Usually pupil shifts with changes in stimulus conditions have little influence on aberrations, but they can with high shifts. The number of aberrations orders that are considered as contributing to refraction influences the proportion of cases that might be considered clinically important.
Resumo:
High-Order Co-Clustering (HOCC) methods have attracted high attention in recent years because of their ability to cluster multiple types of objects simultaneously using all available information. During the clustering process, HOCC methods exploit object co-occurrence information, i.e., inter-type relationships amongst different types of objects as well as object affinity information, i.e., intra-type relationships amongst the same types of objects. However, it is difficult to learn accurate intra-type relationships in the presence of noise and outliers. Existing HOCC methods consider the p nearest neighbours based on Euclidean distance for the intra-type relationships, which leads to incomplete and inaccurate intra-type relationships. In this paper, we propose a novel HOCC method that incorporates multiple subspace learning with a heterogeneous manifold ensemble to learn complete and accurate intra-type relationships. Multiple subspace learning reconstructs the similarity between any pair of objects that belong to the same subspace. The heterogeneous manifold ensemble is created based on two-types of intra-type relationships learnt using p-nearest-neighbour graph and multiple subspaces learning. Moreover, in order to make sure the robustness of clustering process, we introduce a sparse error matrix into matrix decomposition and develop a novel iterative algorithm. Empirical experiments show that the proposed method achieves improved results over the state-of-art HOCC methods for FScore and NMI.
Resumo:
Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.
Resumo:
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.
Resumo:
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1 × lithography and the shortage in enduser generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm. © 2011 SPIE.
Resumo:
A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy−1 and a diffusion rate of 0.133 mm2 h−1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.
Resumo:
This thesis examines the existing frameworks for energy management in the brewing industry and details the design, development and implementation of a new framework at a modern brewery. The aim of the research was to develop an energy management framework to identify opportunities in a systematic manner using Systems Engineering concepts and principles. This work led to a Sustainable Energy Management Framework, SEMF. Using the SEMF approach, one of Australia's largest breweries has achieved number 1 ranking in the world for water use for the production of beer and has also improved KPI's and sustained the energy management improvements that have been implemented during the past 15 years. The framework can be adapted to other manufacturing industries in the Australian context and is considered to be a new concept and a potentially important tool for energy management.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
Multidimensional data are getting increasing attention from researchers for creating better recommender systems in recent years. Additional metadata provides algorithms with more details for better understanding the interaction between users and items. While neighbourhood-based Collaborative Filtering (CF) approaches and latent factor models tackle this task in various ways effectively, they only utilize different partial structures of data. In this paper, we seek to delve into different types of relations in data and to understand the interaction between users and items more holistically. We propose a generic multidimensional CF fusion approach for top-N item recommendations. The proposed approach is capable of incorporating not only localized relations of user-user and item-item but also latent interaction between all dimensions of the data. Experimental results show significant improvements by the proposed approach in terms of recommendation accuracy.
Resumo:
User profiling is the process of constructing user models which represent personal characteristics and preferences of customers. User profiles play a central role in many recommender systems. Recommender systems recommend items to users based on user profiles, in which the items can be any objects which the users are interested in, such as documents, web pages, books, movies, etc. In recent years, multidimensional data are getting more and more attention for creating better recommender systems from both academia and industry. Additional metadata provides algorithms with more details for better understanding the interactions between users and items. However, most of the existing user/item profiling techniques for multidimensional data analyze data through splitting the multidimensional relations, which causes information loss of the multidimensionality. In this paper, we propose a user profiling approach using a tensor reduction algorithm, which we will show is based on a Tucker2 model. The proposed profiling approach incorporates latent interactions between all dimensions into user profiles, which significantly benefits the quality of neighborhood formation. We further propose to integrate the profiling approach into neighborhoodbased collaborative filtering recommender algorithms. Experimental results show significant improvements in terms of recommendation accuracy.
Resumo:
The development of microfinance in Vietnam since 1990s has coincided with a remarkable progress in poverty reduction. Numerous descriptive studies have illustrated that microfinance is an effective tool to eradicate poverty in Vietnam but evidence from quantitative studies is mixed. This study contributes to the literature by providing new evidence on the impact of microfinance to poverty reduction in Vietnam using the repeated cross - sectional data from the Vietnam Living Standard s Survey (VLSS) during period 1992 - 2010. Our results show that micro - loans contribute significantly to household consumption.
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.
Resumo:
Climate has been, throughout modern history, a primary attribute for attracting residents to the “Sunshine States” of Florida (USA) and Queensland (Australia). The first major group of settlers capitalized on the winter growing season to support a year-‐round agricultural economy. As these economies developed, the climate attracted tourism and retirement industries. Yet as Florida and Queensland have blossomed under beneficial climates, the stresses acting on the natural environment are exacting a toll. Southeast Florida and eastern Queensland are among the most vulnerable coastal metropolitan areas in the world. In these places the certainty of sea level rise is measurable with impacts, empirically observable, that will continue to increase regardless of any climate change mitigation.1 The cities of the subtropics share a series of paradoxes relating to climate, resources, environment, and culture. As the subtropical climate entices new residents and visitors there are increasing costs associated with urban infrastructure and the ravages of violent weather. The carefree lifestyle of subtropical cities is increasingly dependent on scarce water and energy resources and the flow of tangible goods that support a trade economy. The natural environment is no longer exploitable as the survival of the human environment is contingent upon the ability of natural ecosystems to absorb the impact of human actions. The quality of subtropical living is challenged by the mounting pressures of population growth and rapid urbanization yet urban form and contemporary building design fail to take advantage of the subtropical zone’s natural attributes of abundant sunshine, cooling breezes and warm temperatures. Yet, by building a global network of local knowledge, subtropical cities like Brisbane, the City of Gold Coast and Fort Lauderdale, are confidently leading the way with innovative and inventive solutions for building resiliency and adaptation to climate change. The Centre for Subtropical Design at Queensland University of Technology organized the first international Subtropical Cities conference in Brisbane, Australia, where the “fault-‐lines” of subtropical cities at breaking points were revealed. The second conference, held in 2008, shed a more optimistic light with the theme "From fault-‐lines to sight-‐lines -‐ subtropical urbanism in 20-‐20" highlighting the leadership exemplified in the vitality of small and large works from around the subtropical world. Yet beyond these isolated local actions the need for more cooperation and collaboration was identified as the key to moving beyond the problems of the present and foreseeable future. The spirit of leadership and collaboration has taken on new force, as two institutions from opposite sides of the globe joined together to host the 3rd international conference Subtropical Cities 2011 -‐ Subtropical Urbanism: Beyond Climate Change. The collaboration between Florida Atlantic University and the Queensland University of Technology to host this conference, for the first time in the United States, forges a new direction in international cooperative research to address urban design solutions that support sustainable behaviours, resiliency and adaptation to sea level rise, green house gas (GHG) reduction, and climate change research in the areas of architecture and urban design, planning, and public policy. With southeast Queensland and southern Florida as contributors to this global effort among subtropical urban regions that share similar challenges, opportunities, and vulnerabilities our mutual aim is to advance the development and application of local knowledge to the global problems we share. The conference attracted over 150 participants from four continents. Presentations by authors were organized into three sub-‐themes: Cultural/Place Identity, Environment and Ecology, and Social Economics. Each of the 22 papers presented underwent a double-‐blind peer review by a panel of international experts among the disciplines and research areas represented. The Centre for Subtropical Design at the Queensland University of Technology is leading Australia in innovative environmental design with a multi-‐disciplinary focus on creating places that are ‘at home’ in the warm humid subtropics. The Broward Community Design Collaborative at Florida Atlantic University's College for Design and Social Inquiry has built an interdisciplinary collaboration that is unique in the United States among the units of Architecture, Urban and Regional Planning, Social Work, Public Administration, together with the College of Engineering and Computer Science, the College of Science, and the Center for Environmental Studies, to engage in funded action research through design inquiry to solve the problems of development for urban resiliency and environmental sustainment. As we move beyond debates about climate change -‐ now acting upon us -‐ the subtropical urban regions of the world will continue to convene to demonstrate the power of local knowledge against global forces, thereby inspiring us as we work toward everyday engagement and action that can make our cities more livable, equitable, and green.