962 resultados para Cell-Line MCF-7


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor beta 3 (TGF-beta 3) are members of the TGF-beta superfamily with high neurotrophic activity on cultured nigral dopamine neurons. We investigated the effects of intracerebral administration of GDNF and TGF-beta 3 on the delayed cell death of the dopamine neurons in the rat substantia nigra following 6-hydroxydopamine lesions of dopaminergic terminals in the striatum. Fluorescent retrograde tracer injections and tyrosine hydroxylase immunocytochemistry demonstrated nigral degeneration with an onset 1 week after lesion, leading to extensive death of nigral neurons 4 weeks postlesion. Administration of recombinant human GDNF for 4 weeks over the substantia nigra at a cumulative dose of 140 micrograms, starting on the day of lesion, completely prevented nigral cell death and atrophy, while a single injection of 10 micrograms 1 week postlesion had a partially protective effect. Continuous administration of TGF-beta 3, starting on the day of lesion surgery, did not affect nigral cell death or atrophy. These findings support the notion that GDNF, but not TGF-beta 3, is a potent neurotrophic factor for nigral dopamine neurons in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutant mice produced by gene targeting in embryonic stem (ES) cells often have a complex or embryonic lethal phenotype. In these cases, it would be helpful to identify tissues and cell types first affected in mutant embryos by following the contribution to chimeras of ES cells homozygous for the mutant allele. Although a number of strategies for following ES cell development in vivo have been reported, each has limitations that preclude its general application. In this paper, we describe ES cell lines that can be tracked to every nucleated cell type in chimeras at all developmental stages. These lines were derived from blastocysts of mice that carry an 11-Mb beta-globin transgene on chromosome 3. The transgene is readily detected by DNA in situ hybridization, providing an inert, nuclear-localized marker whose presence is not affected by transcriptional or translational controls. The "WW" series of ES lines possess the essential features of previously described ES lines, including giving rise to a preponderance of male chimeras, all of which have to date exhibited germ-line transmission. In addition, clones selected for single or double targeting events form strong chimeras, demonstrating the feasibility of using WW6 cells to identify phenotypes associated with the creation of a null mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To elucidate the functions of human immunodeficiency virus type 1 (HIV-1) genes in a nonhuman primate model, we have constructed infectious recombinant viruses (chimeras) between the pathogenic molecular clone of simian immunodeficiency virus (SIV) SIVmac239 and molecular clones of HIV-1 that differ in phenotypic properties controlled by the env gene. HIV-1SF33 is a T-cell-line-tropic virus which induces syncytia, and HIV-1SF162 is a macrophage-tropic virus that does not induce syncytia. A DNA fragment encoding tat, rev, and env (gp160) of SIVmac239 has been replaced with the counterpart genetic region of HIV-1SF33 and HIV-1SF162 to derive chimeric recombinant simian/human immunodeficiency virus (SHIV) strains SHIVSF33 and SHIVSF162, respectively. In the acute infection stage, macaques inoculated with SHIVSF33 had levels of viremia similar to macaques infected with SIVmac239, whereas virus loads were 1/10th to 1/100th those in macaques infected with SHIVSF162. Of note is the relatively small amount of virus detected in lymph nodes of SHIVSF162-infected macaques. In the chronic infection stage, macaques infected with SHIVSF33 also showed higher virus loads than macaques infected with SHIVSF162. Virus persists for over 1 year, as demonstrated by PCR for amplification of viral DNA in all animals and by virus isolation in some animals. Antiviral antibodies, including antibodies to the HIV-1 env glycoprotein (gp160), were detected; titers of antiviral antibodies were higher in macaques infected with SHIVSF33 than in macaques infected with SHIVSF162. Although virus has persisted for over 1 year after inoculation, these animals have remained healthy with no signs of immunodeficiency. These findings demonstrate the utility of the SHIV/macaque model for analyzing HIV-1 env gene functions and for evaluating vaccines based on HIV-1 env antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic mutation of the variable (V) regions of immunoglobulin genes occurs in vivo at rates that have been estimated to be between 10(-3) and 10(-4) per bp per generation. To study this process in vitro, the 18.81 pre-B-cell line and hybrids derived by fusing 18.81 to the NSO myeloma fusion partner were transfected with a mu heavy-chain construct containing a nonsense mutation in the V region (Vn) or the constant region (Cn). Mutation was quantitated by reversion analysis using the ELISA spot assay to detect single cells secreting IgM. Fluctuation analysis revealed that V-region mutations spontaneously occurred in 18.81 cells at an average rate of 5.8 x 10(-6) per bp per cell generation and in selected 18.81-NSO hybrids at greatly increased rates of 1.6 x 10(-3) to 5.8 x 10(-4) per bp per generation. The Vn construct also reverted frequently in transgenic mice, indicating that it contained sufficient information to mutate at high rates both in vivo and in vitro. Sequence analysis of reverted genes revealed that reversion was due to point mutations. Since the rates and nature of the mutations that are occurring in these transfected genes are similar to those reported in vivo, it should be possible to use this system to identify the cis-acting sequences and trans-acting factors that are responsible for V-region somatic hypermutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clonal rat pituitary cell line GH4C1 expresses the genes for several voltage-dependent potassium channels including Kv1.5 and Kv1.4. Dexamethasone, a glucocorticoid agonist, induces a slowly inactivating potassium current in these cells but does not alter the amplitude of a rapidly inactivating component of potassium current. We have found that the induction of the slowly inactivating current can be blocked by an antisense phosphorothioate deoxyoligonucleotide to the Kv1.5 mRNA sequence. In contrast, antisense deoxyoligonucleotides against Kv1.4 mRNA specifically decrease the expression of the dexamethasone-insensitive rapidly inactivating current. These results demonstrate the usefulness of antisense oligonucleotides in correlating potassium currents with specific potassium channel proteins in the cell types in which they are naturally expressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect cell cultures have been extensively utilised for means of production for heterologous proteins and biopesticides. Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five(TM)) cell lines have been widely used for the production of recombinant proteins, thus metabolism of these cell lines have been investigated thoroughly over recent years. The Helicoverpa zea cell line has potential use for the production of a biopesticide, specifically the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV). The growth, virus production, nutrient consumption and waste production of this cell line was investigated under serum-free culture conditions, using SF900II and a low cost medium prototype (LCM). The cell growth ( growth rates and population doubling time) was comparable in SF900II and LCM, however, lower biomass and cell specific virus yields were obtained in LCM. H. zea cells showed a preference for asparagine over glutamine, similar to the High Five(TM) cells. Ammonia was accumulated to significantly high levels (16 mM) in SF900II, which is an asparagine and glutamine rich medium. However, given the absence of asparagine and glutamine in the medium ( LCM), H. zea cells adapted and grew well in the absence of these substrates and no accumulation of ammonia was observed. The adverse effect of ammonia on H. zea cells is unknown since good production of biologically active HaSNPV was achieved in the presence of high ammonia levels. H. zea cells showed a preference for maltose even given an abundance supply of free glucose. Accumulation of lactate was observed in H. zea cell cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial diet incorporating insect cells originally developed for Trichogramma australicum Girault (Hymenoptera: Tricho-grammatidae) was successfully used to rear Trichogramm pretiosum Riley (Hymenoptera: Trichogrammatidae). To refine the diet, individual components were removed. Chicken egg yolk and the insect cells were identified as the most important components for T. pretiosum development. Their removal resulted in few pupae and no adults. Removal of Grace's insect medium, a common component of artificial diets, was found to markedly improve the development of T pretiosum, producing 60% larva to pupa transition and 19% pupa to adult transition. There was no significant difference in T pretiosum development on diets in which milk powder, malt powder or infant formula were interchanged, despite differences in nutrient composition. The use of yeast extract resulted in significantly higher survival to the adult stage when compared with yeast hydrolysate enzymatic and a combination of yeast extract and yeast hydrolysate enzymatic. Comparison of four antimicrobial agents showed the antibacterial agent Gentamycin and the antifungal agent Nystatin had the least detrimental effect on T pretiosum development. The use of insect cell line diets has the potential to simplify artificial diet production and significantly reduce T pretiosum production costs in Australia compared to diets using insect hemolymph or the use of natural or factitious hosts. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultured human choriocarcinoma cells of the BeWo line exhibited saturable accumulation of radioiodide. Inhibition by competing anions followed the affinity series perchlorate >= iodide >= thiocyanate, consistent with uptake through the thyroid iodide transporter, NIS, whose messenger RNA was found in BeWo cells, and whose protein was distributed towards the apical pole of the cells. Efflux obeyed first order kinetics and was inhibited by DIDS, an antagonist of anion exchangers including pendrin, whose messenger RNA was also present. In cultures where iodide uptake through NIS was blocked with excess perchlorate, radiolodide accumulation was stimulated by exposure to medium in which physiological anions were replaced by 2-morpholinoethanesulfonic acid (MES), consistent with the operation of an anion exchange mechanism taking up iodide. Chloride in the medium was more effective than sulfate at inhibiting this uptake, matching the ionic specificity of pendrin. These studies provide evidence that the trophoblast accumulates iodide through NIS and releases it to the fetal compartment through pendrin. (c) 2004 Elsevier Ltd. All rights reserved.