928 resultados para Categorical Data Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuevas cultivares de tomate, de colores distintos al tradicional rojo, se adaptan a la elaboración de productos alternativos, como las confituras. Se estudió la aceptabilidad por parte del consumidor de mermeladas elaboradas con las variedades Victoria FCA, Don Armando FCA y Santa Rosa FCA. Sus frutos: amarillos, anaranjados y rojos, respectivamente, fueron caracterizados por color, peso, acidez: titulable y potencial, y sólidos solubles. Las mermeladas, aromatizadas con clavo de olor, se elaboraron en una planta experimental hasta concentración 67-69 % de sólidos solubles. Un panel de 39 consumidores -clasificados en menores y mayores de 30 años- evaluó aspecto, color, aroma, textura y sabor, aplicando escalas no estructuradas. Las evaluaciones de ambos grupos fueron distintas. Para todas las características sensoriales la prueba de Friedman indicó diferencias entre los tres productos (a = 0,001). En una escala para cinco categorías, más del 50 % de los jueces consideraron las tres mermeladas en las categorías más altas: me gusta y me gusta mucho. El análisis de los datos categóricos de preferencia otorgó el primer lugar a la variedad roja, seguida por la anaranjada y la amarilla. Podría existir un segmento de consumidores interesados en el desarrollo de confituras de tomate amarillo, pero en el caso específico de la mermelada, tuvo mayor aceptabilidad el producto de color igual o parecido al tradicional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 15 years, the number of international development projects aimed at combating global poverty has increased significantly. Within the water and sanitation sector however, and despite heightened global attention and an increase in the number of infrastructure projects, over 800 million people remain without access to appropriate water and sanitation facilities. The majority of donor aid in the water supply and sanitation sector of developing countries is delivered through standalone projects. The quality of projects at the design and preparation stage is a critical determinant in meeting project objectives. The quality of projects at early stage of design, widely referred to as quality at entry (QAE), however remains unquantified and largely subjective. This research argues that water and sanitation infrastructure projects in the developing world tend to be designed in the absence of a specific set of actions that ensure high QAE, and consequently have relatively high rates of failure. This research analyzes 32 cases of water and sanitation infrastructure projects implemented with partial or full World Bank financing globally from 2000 – 2010. The research uses categorical data analysis, regression analysis and descriptive analysis to examine perceived linkages between project QAE and project development outcomes and determines which upstream project design factors are likely to impact the QAE of international development projects in water supply and sanitation. The research proposes a number of specific design stage actions that can be incorporated into the formal review process of water and sanitation projects financed by the World Bank or other international development partners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción Los sistemas de puntuación para predicción se han desarrollado para medir la severidad de la enfermedad y el pronóstico de los pacientes en la unidad de cuidados intensivos. Estas medidas son útiles para la toma de decisiones clínicas, la estandarización de la investigación, y la comparación de la calidad de la atención al paciente crítico. Materiales y métodos Estudio de tipo observacional analítico de cohorte en el que reviso las historias clínicas de 283 pacientes oncológicos admitidos a la unidad de cuidados intensivos (UCI) durante enero de 2014 a enero de 2016 y a quienes se les estimo la probabilidad de mortalidad con los puntajes pronósticos APACHE IV y MPM II, se realizó regresión logística con las variables predictoras con las que se derivaron cada uno de los modelos es sus estudios originales y se determinó la calibración, la discriminación y se calcularon los criterios de información Akaike AIC y Bayesiano BIC. Resultados En la evaluación de desempeño de los puntajes pronósticos APACHE IV mostro mayor capacidad de predicción (AUC = 0,95) en comparación con MPM II (AUC = 0,78), los dos modelos mostraron calibración adecuada con estadístico de Hosmer y Lemeshow para APACHE IV (p = 0,39) y para MPM II (p = 0,99). El ∆ BIC es de 2,9 que muestra evidencia positiva en contra de APACHE IV. Se reporta el estadístico AIC siendo menor para APACHE IV lo que indica que es el modelo con mejor ajuste a los datos. Conclusiones APACHE IV tiene un buen desempeño en la predicción de mortalidad de pacientes críticamente enfermos, incluyendo pacientes oncológicos. Por lo tanto se trata de una herramienta útil para el clínico en su labor diaria, al permitirle distinguir los pacientes con alta probabilidad de mortalidad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show the equivalence between the use of correspondence analysis (CA)of concadenated tables and the application of a particular version ofconjoint analysis called categorical conjoint measurement (CCM). Theconnection is established using canonical correlation (CC). The second part introduces the interaction e¤ects in all three variants of theanalysis and shows how to pass between the results of each analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper investigates a Bayesian hierarchical model for the analysis of categorical longitudinal data from a large social survey of immigrants to Australia. Data for each subject are observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and the explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.