983 resultados para COLLAGEN FIBER ORIENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a 2 = 0.55, p = 0.04, left; a 2 = 0.74, p = 0.006, right), bilateral parietal (a 2 = 0.85, p < 0.001, left; a 2 = 0.84, p < 0.001, right), and left occipital (a 2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto- occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compensation systems are an essential tool to link corporate goals such as customer orientation with individual and organisational performance. While some authors demonstrate the positive effects of incorporating nonfinancial measures into the compensation system empirically, companies have encountered problems after linking pay to customer satisfaction. We argue that reasons for this can be attributed to the measurement of customer satisfaction as well as to the missing link between customer satisfaction and customer retention and profitability in theses cases. Hence, there is a strong need for the development of an holistic reward and performance measurement model enabling an organisation to identify cause-and-effect relationships when linking rewards to nonfinancial performance measures. We present a conceptual framework of a success chain driven reward system that enables organisations to systematically derive a customer-oriented reward strategy. In the context of performance evaluation, we propose to rely on integrated and multidimensional measurement methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding α1β1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the β1 and α1 integrin proteins, and fibroblasts from α1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble α1β1 integrin bound immobilized RR virus, and peptides representing the α1β1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody screening of phage-displayed random peptide libraries to identify mimotopes of conformational epitopes is promising. However, because interpretations can be difficult, an exemplary system has been used in the present study to investigate whether variation in the peptide sequences of selected phagotopes corresponded with variation in immunoreactivity. The phagotopes, derived using a well-characterized monoclonal antibody, CII-C1, to a known conformational epitope on type II collagen, C1, were tested by direct and inhibition ELISA for reactivity with CII-C1. A multiple sequence alignment algorithm, PILEUP, was used to sort the peptides expressed by the phagotopes into clusters. A model was prepared of the C1 epitope on type II collagen. The 12 selected phagotopes reacted with CII-C1 by both direct ELISA (titres from < 100-11 200) and inhibition ELISA (20-100% inhibition); the reactivity varied according to the peptide sequence and assay format. The differences in reactivity between the phagotopes were mostly in accord with the alignment, by PILEUP, of the peptide sequences. The finding that the phagotopes functionally mimicked the C1 epitope on collagen was validated in that amino acids RRL at the amino terminal of many of the peptides were topographically demonstrable on the model of the C1 epitope. Notably, one phagotope that expressed the widely divergent peptide C-IAPKRHNSA-C also mimicked the C1 epitope, as judged by reactivity in each of the assays used: these included cross-inhibition of CII-C1 reactivity with each of the other phagotopes and inhibition by a synthetic peptide corresponding to that expressed by the most frequently selected phagotope, RRLPFGSQM. Thus, it has been demonstrated that multiple phage-displayed peptides can mimic the same epitope and that observed immunoreactivity of selected phagotopes with the selecting mAb can depend on the primary sequence of the expressed peptide and also on the assay format used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies to type II collagen, and to Epstein Barr virus nuclear antigen-1 (EBNA-1) have been associated with rheumatoid arthritis (RA). In studies involving probing of phage-displayed random peptide libraries with an antibody to type II collagen, CII-C1, we observed that among 17 phagotopes selected 5 expressed peptides with homology with the sequence of EBNA-1. The residues in common were RLPFG. Hence we tested sera from 50 patients with RA, of whom 26 had antibodies to native type II collagen, and 43 healthy controls, for reactivity by ELISA with a phagotope selected 4 times, which expressed the peptide RRLPFGSQM. Eight RA sera (16%) but no normal sera reacted with the phagotope (p = 0.025). This reactivity could not be correlated with reactivity of RA sera with EBNA-1 by semi-quantitative western blot, with which reactivity occurred in 78% of RA patients and 81% of controls. Evidence for molecular mimicry was not found insofar as the phagotope did not inhibit reactivity of RA sera with EBNA-1 and CII-C1 was not reactive with EBNA-1. We conclude that the reactivity of the RA sera with the phagotope is most likely due to the phagotope being a mimic of an epitope of type II collagen for a proportion of RA sera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of B cell epitopes has been advanced by the use of random peptide libraries displayed within the coat protein of bacteriophage. This technique was applied to the monoclonal antibody (mAb) C1 to type II collagen (CII-C1). CII-C1 is known to react with a conformational epitope on type II collagen that includes residues 359-363. Three rounds of selection were used to screen two random nonameric phage libraries and 18 phagotopes were isolated. CII-C1 reacted by ELISA with 17 of the 18 phagotopes: one phagotope contained a stop codon. Of the eight most reactive phage, seven inhibited the reactivity by ELISA of CII-C1 with type II collagen. Of the 18 phage isolated, 11 encoded the motif F-G-x-Q with the sequence F-G-S-Q in 6, 2 encoded F-G-Q, and one the reverse motif Q-x-y-F. Most phagotopes that inhibited the reactivity of CII-C1 encoded two particular motifs consisting of two basic amino acid residues and a hydrophobic residue in the first part of the insert and the F-G-x-Q or F-G-Q motif ill the second part; phagotopes which contained only one basic residue in the first part of the sequence were less reactive. These motifs are not represented in the linear sequence of type II collagen and thus represent mimotopes of the epitope for CII-C1 on type II collagen. There were five phagotopes with peptide inserts containing the sequence RLPFG occurring in the Epstein-Barr virus nuclear antigen, EBNA- 1. This is of interest because EBV has been implicated in the initiation of rheumatoid arthritis (RA) by reason of increased reactivity to EBNA-1 in RA sera. In conclusion, the phage display technique disclosed mimotopes for a conformational epitope of type II collagen, and revealed an interesting homology with a sequence of the EBNA-1 antigen from Epstein Barr virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber Bragg Grating (FBG) accelerometers using transverse forces with an inertial object placed at the middle of the FBG have a high sensitivity but low resonant frequency. The resonant frequency 26 Hz and sensitivity at 6 Hz 1.29 nm/g were reported based on a 50mm-long FBG accelerometer. We demonstrate that the first FBG accelerometer based on a transversely rotating stick, which can, at the same or even larger size, keep the high sensitivity and significantly increase the low resonant frequency. In our experiments, a 77.5mm-long FBG accelerometer has achieved a similar sensitivity but 65% higher resonant frequency. This novel structure not only significantly widens the potential applications of FBG accelerometers by increasing their resonant frequencies but also provides a new route to design other accelerometers, e.g. micro accelerometers.