913 resultados para C-jun Kinase
Resumo:
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K+ channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A in order to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K+ homeostasis.
Resumo:
The translocation of protein kinase C (PKC) isoforms PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta from soluble to particulate fractions was studied in ventricular cardiomyocytes cultured from neonatal rats. Endothelin-1 (ET-1) caused a rapid ETA receptor-mediated translocation of PKC-delta and PKC-epsilon (complete in 0.5-1 min). By 3-5 min, both isoforms were returning to the soluble fraction, but a greater proportion of PKC-epsilon remained associated with the particulate fraction. The EC50 of translocation for PKC-delta was 11-15 nM ET-1 whereas that for PKC-epsilon was 1.4-1.7 nM. Phenylephrine caused a rapid translocation of PKC-epsilon (EC50 = 0.9 microM) but the proportion lost from the soluble fraction was less than with ET-1. Translocation of PKC-delta was barely detectable with phenylephrine. Neither agonist caused any consistent translocation of PKC-alpha or PKC-zeta. Activation of p42 and p44 mitogen-activated protein kinase (MAPK) by ET-1 or phenylephrine followed more slowly (complete in 3-5 min). Phosphorylation of p42-MAPK occurred simultaneously with its activation. The proportion of the total p42-MAPK pool phosphorylated in response to ET-1 (50%) was greater than with phenylephrine (20%). In addition to activation of MAPK, an unidentified p85 protein kinase was activated by ET-1 in the soluble fraction whereas an unidentified p58 protein kinase was activated in the particulate fraction.
Resumo:
The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.
Resumo:
In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.
Resumo:
The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.
Resumo:
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Aims: Na(+), K(+)-ATPase activity contributes to the regulation of vascular contractility and it has been suggested that vascular Na(+), K(+)-ATPase activity may be altered during the progression of diabetes; however the mechanisms involved in the altered Na(+), K(+)-ATPase activity changes remain unclear. Thus, the aim of the present study was to evaluate ouabain-sensitive Na(+), K(+)-ATPase activity and the mechanism(s) responsible for any alterations on this activity in aortas from 1- and 4-week streptozotocin-pretreated (50 mg kg(-1), i.v.) rats. Main methods: Aortic rings were used to evaluate the relaxation induced by KCl (1-10 mM) in the presence and absence of ouabain (0.1 mmol/L) as an index of ouabain-sensitive Na(+), K(+)-ATPase activity. Protein expression of COX-2 and p-PKC-beta II in aortas were also investigated. Key findings: Ouabain-sensitive Na(+), K(+)-ATPase activity was unaltered following 1-week of streptozotocin administration, but was increased in the 4-week diabetic aorta (27%). Endothelium removal or nitric oxide synthase inhibition with L-NAME decreased ouabain-sensitive Na(+), K(+)-ATPase activity only in control aortas. In denuded aortic rings, indomethacin. NS-398, ridogrel or Go-6976 normalized ouabain-sensitive Na(+), K(+)-ATPase activity in 4-week diabetic rats. In addition, COX-2 (51%) and p-PKC-beta II (59%) protein expression were increased in 4-week diabetic aortas compared to controls. Significance: In conclusion, diabetes led to a time-dependent increase in ouabain-sensitive Na(+), K(+)-ATPase activity. The main mechanism involved in this activation is the release of TxA(2)/PGH(2) by COX-2 in smooth muscle cells, linked to activation of the PKC pathway. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-aprotein kinase C (aPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and aPKC (aPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and aPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar aPKC-IR cell density (mean density = 1306 ± 393 cells/mm2) compared to control (1886 ± 892 cells/mm2; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm2 (2 µg/g) and 845 ± 82 cells/mm2 (6 µg/g), also lower than control (1312 ± 31 cells/mm2; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of aKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Resumo:
Background: How damaged mitochondria are removed by mitophagy is not fully described. Results: Ischemia and reoxygenation (I/R)-induced injury triggers mitochondria association of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and mitophagy, and protein kinase Cδ (PKCδ) activation inhibits it. Conclusion: PKCδ-mediated phosphorylation of GAPDH inhibits mitophagy. Significance: GAPDH/PKCδ is a signaling switch, which is activated during ischemic injury to regulate the balance between cell survival by mitophagy and cell death by apoptosis.
Resumo:
The nuclear signaling that is triggered in response to DNA damage entails the recruitment and assembly of repair proteins and the induction of genes involved in the activation of cell cycle checkpoint, apoptosis or senescence. The extensive changes in chromatin structure underlying these processes suggest that chromatin-modifying enzymes could be relevant targets of DNA damage-activated signaling. The acetyltransferases p300 and CBP participate in DNA damage-activated responses, including local histone hyperacetylation, cell cycle regulation, and co-activation of DNA damage activated proteins, such as p53, p73 and BRCA1. However, the link between DNA damage and p300/CBP activation has not been identified.We have detected p300 tyrosine phosphorylation in response to DNA damage. We show that the DNA damage-activated cAbl tyrosine kinase enters the nuclei of cells exposed to genotoxic agents and phosphorylates p300 on a tyrosine residue within the bromodomain that is conserved in p300, CBP and many other bromodomain-containing proteins. Antibodies against tyrosine phosphorylated p300/CBP show a DNA damage-inducible nuclear staining, suggesting that p300 tyrosine phosphorylation is an event linking DNA damage and chromatin modifications.
Resumo:
Die Kontaktihibition, d.h. die Zell-Zell-Kontakt-vermittelte Proliferationskontrolle, stellt einen fundamentalen Mechanismus zur Aufrechterhaltung der Homöostase in vitro und in vivo dar. So stellen in der Zellkultur nicht-transformierte Zellen in der Regel ihr Wachstum ein, sobald sie einen einschichtigen Zellrasen gebildet haben. Umgekehrt zeichnen sich transformierte Zellen durch einen Verlust der Kontaktinhibition aus. Sie wachsen nach Erreichen eines konfluenten Zellrasens mehrschichtig weiter, und es kommt zur Ausbildung charakteristischer Foci. In dieser Arbeit konnte nachgewiesen werden, dass die Proteinkinase C - delta eine wichtige Funktion in der Regulation der Zytoarchitektur humaner Keratinozyten besitzt und zugleich über Modulation der Zell-Zelladhäsion, insbesondere über Cadherin und Catenin, Einfluss nimmt.