933 resultados para Butyl Acrylate
Resumo:
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]
Resumo:
Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
In this work, several tertiary amine-based diaryl diselenides were synthesized and evaluated for their glutathione peroxidase (GPx)-like antioxidant activities using hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide as substrates and thiophenol (PhSH) and glutathione (GSH) as co-substrates. A comparison of the GPx-like activity of 4-methoxy-substituted N,N-dialkylbenzylamine-based diselenides with that of the corresponding 6-methoxy-substituted compounds indicates that the activity highly depends on the position of the methoxy substituent. Although the methoxy group at 4- and 6-position alters the electronic properties of selenium, the substitution at the 6-position provides the required steric protection for some of the key intermediates in the catalytic cycle. A detailed experimental and theoretical investigation reveals that the 6-methoxy substituent prevents the undesired thiol exchange reactions at the selenium centers in the selenenyl sulfide intermediates. The 6-methoxy substituent also prevents the formation of seleninic and selenonic acids. When PhSH is used as the thiol co-substrate, the 4-methoxy-substituted diselenides exhibit GPx-like activity similar to that of the parent compounds as the 4-methoxy substituent does not block the selenium center in the selenenyl sulfide intermediates from thiol exchange reactions. In contrast, the 4-methoxy substituent significantly enhances the GPx-like activity of the diselenides when glutathione (GSH) is used as the co-substrate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Four dinuclear bis(mu-Cl) bridged copper(II) complexes, Cu-2(mu-Cl)(2)(L-X)(2)](ClO4)(2) (L-X = N,N-bis(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L-X ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH2) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu-t-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.
Resumo:
A novel, mild and convenient method for the nitrodecarboxylation of substituted cinnamic acid derivatives to their nitroolefins is achieved using a catalytic amount of CuCl (10 mol%) and tert-butyl nitrite (2 equiv.) as a nitrating agent in the presence of air. This reaction provides a useful method for the synthesis of beta,beta-disubstituted nitroolefin derivatives, which are generally difficult to access from other conventional methods. Additionally, this reaction is selective as the E-isomer of the acid derivatives furnishes the corresponding E-nitroolefins. One more salient feature of the method is, unlike other methods, no metal nitrates or HNO3 are employed for the transformation.
Resumo:
Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, H-1 NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P2(1) space group, while L-6 in P2(1)/c space group. Molecules of L-4 and L-8 from polymeric chains through C-H center dot center dot center dot O and N-H center dot center dot center dot O close contacts. L-6 is a dimer formed by N-H center dot center dot center dot O interaction. Slipped pi-pi stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = 1-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
N-Alkyl substituted pyrazoloanthrone derivatives were synthesized, characterized and tested for their in vitro inhibitory activity over c-Jun N-terminal kinase (JNK). Among the tested molecules, a few derivatives showed significant inhibitory activity against JNK with minimal off-target effect on other mitogen-activated protein kinase (MAP kinase) family members such as MEK1/2 and MKK3,6. These results suggested that N-alkyl (propyl and butyl) bearing pyrazoloanthrone scaffolds provide promising therapeutic inhibitors for JNK in regulating inflammation associated disorders.
Resumo:
The enantiospecific total synthesis of 14-membered macrolactone Sch 725674 was accomplished from tartaric acid. Key reactions in the synthesis include the Ley's dithiaketalization of an alkynone derived from the bis-Weinreb amide of tartaric acid, Boord olefination, and ring-closing metathesis of an acrylate ester.
Resumo:
Iron(III) complexes Fe(L)(L') (NO3)]-in which L is phenyl-N, N-bis(pyridin-2-yl) methyl]methanamine (1), (anthracen-9-yl)N, N-bis(pyridin-2-yl) methyl] methanamine (2), (pyreny-1-yl)-N, N-bis(pyridin- 2-yl) methyl] methanamine (3-5), and L' is catecholate (1-3), 4-tert-butyl catecholate (4), and 4-(2-aminoethyl)benzene- 1,2-diolate (5)-were synthesized and their photocytotoxic proper-ties examined. The five electron-paramagnetic complexes displayed a FeIII/ Fe-II redox couple near similar to 0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1m tetrabutylammonium perchlorate (TBAP). They showed unpre-cedented photocytotoxicity in red light (600-720 nm) to give IC50-15 mm in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)-DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.
Resumo:
A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.
Resumo:
Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.
Resumo:
Ferrocenyl (Fc) conjugates (1-3) of alkylpyridinium cations (E)-N-alkyl-4-2-(ferrocenyl)vinyl]pyridinium bromide (alkyl = n-butyl in 1, N,N,N-triethylbutan-1-aminium bromide in 2, and n-butyltriphenylphosphonium bromide in 3) were prepared and characterized, and their photocytotoxicities and cellular uptakes in HeLa cancer and 3T3 normal cells were studied. The species with a 4-methoxyphenyl moiety (4) instead of Fc was used as a control. The triphenylphosphonium-appended 3 was designed for specific delivery into the mitochondria of the cells. Compounds 1-3 showed metal-to-ligand charge-transfer bands at approximate to 550 nm in phosphate buffered saline (PBS). The Fc(+)/Fc and pyridinium core redox couples were observed at 0.75 and -1.2 V versus a saturated calomel electrode (SCE) in CH2Cl2/0.1 M (nBu(4)N)ClO4. Conjugate 3 showed a significantly higher photocytotoxicity in HeLa cancer cells IC50 = (1.3 +/- 0.2) M] than in normal 3T3 cells IC50 = (27.5 +/- 1.5) M] in visible light (400-700 nm). The positive role of the Fc moiety in 3 was evident from the inactive nature of 4. A JC-1 dye (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide) assay showed that 3 targets the mitochondria and induces apoptosis by the mitochondrial intrinsic pathway caused by reactive oxygen species (ROS). Annexin/propidium iodide studies showed that 3 induces apoptotic cell death in visible light by ROS generation, as evidenced from dichlorofluorescein diacetate assay. Compounds 1-3 exhibit DNA photocleavage activity through the formation of hydroxyl radicals.
Resumo:
The self-assembly of p-pyridyl-ended oligo-p-phenylenevinylenes (OPVs) in ethanol leads to the formation of either hollow or solid microrods. The corresponding protonated OPVs with n-butyl chains induce transparent gelation and also gel phase crystallization owing to various synergistic noncovalent interactions. The chloride ion-selective gelation, AIEE and stimuli responsiveness of the gel are also observed.
Resumo:
In this study, fluoranthene-based derivatives with a high thermal stability were synthesized for applications in organic electroluminescent devices. The two derivatives synthesized in this study, bis(4-(7,9,10-triphenylfluoranthen-8-yl)phenyl)sulfane (TPFDPS) and 2,8-bis(7,9,10-triphenylfluoranthen-8-yl)dibenzob,d]thiophene (TPFDBT), were characterized by cyclic voltammetry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TPFDPS exhibits a high T-g of 210 degrees C while TPFDBT is crystalline in nature. Both the derivatives are thermally stable up to 500 degrees C. The charge transport studies reveal predominant electron transport properties. Subsequently, we fabricated blue OLEDs with 2-tert-butyl-9,10-bis-(beta-naphthyl)-anthracene (TBADN) as the emitting layer to demonstrate the applications of these molecules as an electron transporting layer.
Resumo:
An efficient azidation of 1,3-dicarbonyl compounds led to tertiary azides in the presence of tetrabutylammonium iodide (TBAI). TBAI is used as a pre-catalyst along with aq. tert-butyl hydroperoxide (TBHP) as an oxidant in aqueous medium. This operationally simple, practical, mild and green method provides an opportunity to synthesize a variety of azidated -keto esters, amides, and ketones in good yields.