996 resultados para Bs.As.
Resumo:
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.
Resumo:
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.
Resumo:
Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3– concentrations in biochar-amended soils. A decrease in NH4+ and NO3– following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3–. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.
Resumo:
The existing Collaborative Filtering (CF) technique that has been widely applied by e-commerce sites requires a large amount of ratings data to make meaningful recommendations. It is not directly applicable for recommending products that are not frequently purchased by users, such as cars and houses, as it is difficult to collect rating data for such products from the users. Many of the e-commerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user's query are retrieved and recommended to the user. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their online navigation behaviour. This paper proposes to integrate collaborative filtering and search-based techniques to provide personalized recommendations for infrequently purchased products. Two different techniques are proposed, namely CFRRobin and CFAg Query. Instead of using the target user's query to search for products as normal search based systems do, the CFRRobin technique uses the products in which the target user's neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAg Query technique uses the products that the user's neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAg Query perform better than the standard Collaborative Filtering (CF) and the Basic Search (BS) approaches, which are widely applied by the current e-commerce applications. The CFRRobin and CFAg Query approaches also outperform the e- isting query expansion (QE) technique that was proposed for recommending infrequently purchased products.
Resumo:
The trial in Covecorp Constructions Pty Ltd v Indigo Projects Pty Ltd (File no BS 10157 of 2001; BS 2763 of 2002) commenced on 8 October 2007 before Fryberg J, but the matter settled on 6 November 2007 before the conclusion of the trial. This case was conducted as an “electronic trial” with the use of technology developed within the court. This was the first case in Queensland to employ this technology at trial level. The Court’s aim was to find a means to capture the key benefits which are offered by the more sophisticated trial presentation software of commercial service providers, in a way that was inexpensive for the parties and would facilitate the adoption of technology at trial much more broadly than has been the case to date.
Resumo:
Scenario 1 A buys a two storey commercial building built along the only street frontage to the property. Vehicles cannot reach the rear of the property as the building extends across the entire width of the land. A bought the building with full knowledge that vehicular access to the rest of the property had been compromised by a desire to obtain maximum street frontage for the building which was occupied by a commercial tenant. On street parking is scarce in the surrounding area. A (to the knowledge of the adjoining owner B) constructs a carpark at the rear of the building. The employees of A’s tenant have been using the carpark obtaining access via a driveway on B’s land. To formalise this arrangement, A seeks a right of way for vehicles to travel down B’s driveway to access the carpark...