992 resultados para Brahe, Tycho, 1546-1601.
Resumo:
Nitrofuran antibiotic residues in food continue to be of international concern. The finding of sources of semicarbazide (SEM), other than through the misuse of nitrofurazone, present a challenge to the use of SEM as a definitive marker residue for this drug. Detection of intact (parent) nitrofurazone would avoid confusion over the source of SEM residues. Broiler chickens were fed sub-therapeutic nitrofuran-containing diets and their tissues were analysed for parent compounds and metabolites by liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS). Depletion half-lives in muscle were longer for tissue-bound metabolite residues, 3.4 days - 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ) - to 4.5 days (SEM), than total metabolite residues, 2.0 days (AOZ) to 3.2 days (SEM). Metabolite concentrations were higher in eyes than in muscle. Metabolite half-lives in eyes ranged from 8.5 days (1-aminohydantoin (AHD)) to 20.3 days (SEM). Nitrofuran parent compounds were also detected in eyes. Furaltadone was detected in single eyes after 21 days' withdrawal of a 6 mg kg -1 furaltadone diet. When 50 eyes from broilers containing metabolites in muscle close to the 1 µg kg -1 minimum required performance level (MRPL) were pooled into single samples, 1.2 ng of furazolidone and 31.1 ng of furaltadone were detected, but nitrofurazone was not detected due to the long depletion half-life of SEM in muscle. Further studies are required to improve LC-MS/MS nitrofurazone sensitivity and refine the sample size necessary to use nitrofurazone detection in pooled eyes as a complement to SEM detection in muscle.
Resumo:
The uptake and translocation into shoots of arsenate, methylarsonate (MA), and dimethylarsinate (DMA) by 46 different plant species were studied. The plants (n = 3 per As species) were exposed for 24 h to 1 mg of As per litre under identical conditions. Total arsenic was measured in the roots and the shoots by acid digestion and inductively coupled plasma mass spectrometry from which, besides total As values, root absorption factors and shoot-to-root transfer factors were calculated. As uptake into the root for the different plant species ranged from 1.2 to 95 (mu g of As per g of dry weight) for As-V, from 0.9 to 44 for MA(V) and from 0.8 to 13 for DMA(V), whereas in shoots the As concentration ranged from 0.10 to 17 for As-V, 0.1 to 13 for MA(V), and 0.2 to 17 for DMA(V). The mean root absorption factor for As-V (1.2 to 95%) was five times higher than for DMA(V) (0.8 to 13%) and 2.5 times higher than for MA(V) (0.9 to 44%). Although the uptake of arsenic in the form of As-V was significantly higher than that of MA(V) and DMA(V), the translocation of the methylated species was more efficient in most plant species studied. Thus, an exposure of plants to DMA(V) or MA(V) can result in higher arsenic concentrations in the shoots than when exposed to As-V. Shoot-to-root transfer factors (TFs) for all plants varied with plant and arsenic species. While As-V had a median TF of 0.09, the TF of DMA(V) was nearly a factor of 10 higher (0.81). The median TF for MA(V) was in between (0.30). Although the TF for MA(V) correlates well with the TF for DMA(V), the plants can be separated into two groups according to their TF of DMA(V) in relation to their TF of As-V. One group can immobilise DMA(V) in the roots, while the other group translocates DMA(V) very efficiently into the shoot. The reason for this is as yet unknown.
Resumo:
Galactic cosmic-ray (CR) acceleration to the knee in the spectrum at a few PeV is only possible if the magnetic field ahead of a supernova remnant (SNR) shock is strongly amplified by CRs escaping the SNR. A model formulated in terms of the electric charge carried by escaping CRs predicts the maximum CR energy and the energy spectrum of CRs released into the surrounding medium. We find that historical SNRs such as Cas A, Tycho and Kepler may be expanding too slowly to accelerate CRs to the knee at the present time.
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projected scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.
Resumo:
The ultra short duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live, cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.
Resumo:
Child protection social work is acknowledged as a very stressful occupation, with high turnover and poor retention of staff being a major concern. This paper highlights themes that emerged from findings of sixty-five articles that were included as part of a systematic literature review. The review focused on the evaluation of research findings, which considered individual and organisational factors associated with resilience or burnout in child protection social work staff. The results identified a range of individual and organisational themes for staff in child protection social work. Nine themes were identified in total. These are categorised under ‘Individual’ and ‘Organisational’ themes. Themes categorised as individual included personal history of maltreatment, training and preparation for child welfare, coping, secondary traumatic stress, compassion fatigue and compassion satisfaction. Those classified as organisational included workload, social support and supervision, organisational culture and climate, organisational and professional commitment, and job satisfaction or dissatisfaction. The range of factors is discussed with recommendations and areas for future research are highlighted.
Resumo:
A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geometries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering.
Resumo:
This article reveals the effect of plasma pre-treatment on antimony tin oxide (ATO) nanoparticles. The effect is to allow Pt@Pd to be deposited homogeneously on the ATO surface with high dispersion and narrow particle size distribution. The Pt@Pd core–shell catalyst was prepared using the polyol method and shows a dramatic improvement towards ORR activity and durability.
Resumo:
Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst
Resumo:
Environmental context Seaweeds hyperaccumulate the toxic metalloid arsenic, but seemingly achieve detoxification by transformation to arsenosugars. The edible seaweed hijiki is a notable exception because it contains high levels of toxic arsenate and arsenite. Terrestrial plants detoxify arsenic by forming arsenitephytochelatin complexes. The hypothesis that seaweeds also synthesise phytochelatins to bind arsenite as a means of detoxification before arsenosugar synthesis is tested in this investigation. Abstract Phytochelatins (PCs), generic structure [-Glu-Cys]n-Gly, are peptides synthesised by terrestrial plants to bind toxic metal(loid)s such as cadmium and arsenic. Seaweeds are arsenic hyperaccumulators, seemingly achieving detoxification via arsenosugar biosynthesis. Whether seaweeds synthesise PCs to aid detoxification during arsenic exposure is unknown. Hizikia fusiforme (hijiki) and Fucus spiralis were used as model seaweeds: the former is known for its large inorganic arsenic concentration, whereas the latter contains mainly arsenosugars. F. spiralis was exposed to 0, 1 and 10mgL -1 arsenate solutions for 24h, whereas hijiki was analysed fresh. All samples contained As III, glutathione and reduced PC 2, identified using HPLC-ICP-MS/ES-MS. Although hijiki contained no As IIIPC complexes, arsenate exposed F. spiralis generated traces of numerous arsenic compounds that might be As IIIGS or As IIIPC 2 complexes. As IIIPC complexes seem not to be a principal storage form for long-term arsenic storage within seaweeds. However, 40 times higher glutathione concentrations were found in hijiki than F. spiralis, which may explain how hijiki deals with its high inorganic arsenic burden. © 2011 CSIRO.
Resumo:
Kenyan tannery and associated environmental samples were selected for ecotoxicological assessment. A tool-kit of techniques was developed, including whole-cell biosensor and chemical assays. A luminescence based bacterial biosensor (Escherichia coli HB101 pUCD607) (via a multi-copy plasmid) was used for toxicity assessment. Samples were manipulated prior to biosensor interrogation to identify the nature of the toxic contaminants. Untreated samples (before any manipulations) showed a strong toxic effect at the discharge point in comparison to other sampling points. Sparging was used to identify toxicity associated with volatile organics. The toxicity of contaminants, removed by treatment with activated charcoal was identified for all the sampling points except for those upstream of effluent discharges. Filtration identified toxicity associated with suspended solids. Changes in availability of toxic contaminants due to pH adjustment of most samples from the tannery effluent treatment pits were also associated with the extreme pH values (4.0 and 8.0). The approach used has highlighted the complexicity of toxic pollutants in effluent from the tanning industry and the dissection of toxicity points to possible remediation strategies for effluents from the tanning industry.
Resumo:
Sheep on the island of North Ronaldsay (Orkney, UK) feed mostly on seaweed, which contains high concentrations of dimethylated arsenoribosides. Wool of these sheep contains dimethylated, monomethylated and inorganic arsenic, in addition to unidentified arsenic species in unbound and complexed form. Chromatographic techniques using different separation mechanisms and detectors enabled us to identify five arsenic species in water extracts of wool. The wool contained 5.2 ± 2.3 μg arsenic per gram wool. About 80% of the arsenic in wool was extracted by boiling the wool with water. The main species is dimethylarsenic, which accounted for about 75 to 85%, monomethylated arsenic at about 5% and the rest is inorganic arsenic. Depending on the separation method and condition, the chromatographic recovery of arsenic species was between 45% for the anion exchange column, 68% for the size exclusion chromatography (SEC) and 82% for the cation exchange column. The SEC revealed the occurrence of two unknown arsenic compounds, of which one was probably a high molecular mass species. Since chromatographic recovery can be improved by either treating the extract with CuCl/HCl (CAT: 90%) or longer storage of the sample (CAT: 105%), in particular for methylated arsenic species, it can be assumed that labile arsenic -protein-like coordination species occur in the extract, which cannot be speciated with conventional chromatographic methods. It is clear from our study of sheep wool that there can be different kinds of 'hidden' arsenic in biological matrices, depending on the extraction, separation and detection methods used. Hidden species can be defined as species that are not recordable by the detection system, not extractable or do not elute from chromatographic columns. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.
Resumo:
Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale. These geo-textual data cover a wide range of topics. Users are interested in receiving up-to-date geo-textual objects (e.g., geo-tagged Tweets) such that their locations meet users’ need and their texts are interesting to users. For example, a user may want to be updated with tweets near her home on the topic “dengue fever headache.” In this demonstration, we present SOPS, the Spatial-Keyword Publish/Subscribe System, that is capable of efficiently processing spatial keyword continuous queries. SOPS supports two types of queries: (1) Boolean Range Continuous (BRC) query that can be used to subscribe the geo-textual objects satisfying a boolean keyword expression and falling in a specified spatial region; (2) Temporal Spatial-Keyword Top-k Continuous (TaSK) query that continuously maintains up-to-date top-k most relevant results over a stream of geo-textual objects. SOPS enables users to formulate their queries and view the real-time results over a stream of geotextual objects by browser-based user interfaces. On the server side, we propose solutions to efficiently processing a large number of BRC queries (tens of millions) and TaSK queries over a stream of geo-textual objects.