960 resultados para Blast furnace slag
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Arsenic and germanium have been evaluated as internal standards to minimize matrix effects on the direct determination of selenium in milk by graphite furnace atomic absorption spectrometry (GFAAS) using tubes with integrated platform, pre-treated with W together with I'd as chemical modifier. The efficiency of As and Ge as internal standards for 25 mu g L-1 Se plus 500 mu g (L)-1 As or Ge in diluted (1 + 9 v/v) milk plus 1.0% (v/v) HNO3 was evaluated by means of correlation graphs plotted from the normalized absorbance signals (n = 20) of internal standard (axis gamma) versus analyte (axis x). The equations that describe the linear regression were: A(As)= - 0.004 +/- 0.019 +/- 1.02 + 0.019 A(Se) (r=0.9967 +/- 0.005); A(Ge)= - 0.0 17 +/- 0.015 + 1.01 +/- 0.015 A(Se) (r = 0.9978 +/- 0.004). Samples and reference solutions were automatically spiked with 500 mu g L-1 Ge or As and 1.0% (v/v) HNO3 by the autosampler. For 20 mu L of aqueous standard solutions, analytical curves in the 5.00-40.0 mu g L-1 Se range were established using the ratio of Se absorbance to internal standard absorbance (A(Se)A(IS)) versus analyte concentration, and good linear correlations were obtained. The characteristic mass was 40 pg Se. Limits of detection were 0.55 and 0.40 mu g L-1 with As and Ge as the internal standard, respectively. Relative standard deviations (RSD) for a sample containing 25 mu g L-1 Se were 1.2% and 1.0% (n = 12) using As and Ge, respectively. The RSD without internal standardization was about 6%. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 99-105% range with IS and in the 70-80% range without IS. Using Ge as the internal standard, results of analysis of standard reference materials were in agreement with certified values at a 95% confidence level. The selenium concentration for 10 analyzed milk samples varied from 5.0 to 20 mu g L-1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.
Description of a new BCR-ABL point mutation in a CML patient with evolution to lymphoid blast crisis
Resumo:
Strontium barium niobate (SBN) thin films were crystallized by conventional electric furnace annealing and by rapid-thermal annealing (RTA) at different temperatures. The average grain size of films was 70 nm and thickness around 500 nm. Using x-ray diffraction, we identified the presence of polycrystalline SBN phase for films annealed from 500 to 700 °C in both cases. Phases such as SrNb2O6 and BaNb2O6 were predominantly crystallized in films annealed at 500 °C, disappearing at higher temperatures. Dielectric and ferroelectric parameters obtained from films crystallized by conventional furnace and RTA presented essentially the same values.
Resumo:
The consumption of the carbonaceous mortar for injection in the CSN's blast furnaces hearth has increased in the last years, as a function of the modern situation of the blast furnaces com paign. Allied to the growing consumption background, the devaluation of the Brazilian currency stroke hardly the importation costs of this product.
Resumo:
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO 3) 2/Mg(NO 3) 2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l -1 As and 0.2% (v/v) HNO 3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l -1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Different modifiers (IrCl3, W+IrCl3, Zr+IrCl 3) and coatings (Ir, W-Ir, Zr-Ir) were evaluated for the simultaneous determination of arsenic, bismuth, lead, antimony, and selenium in milk by graphite furnace atomic absorption spectrometry using the 'end-capped' transversely heated graphite atomizer (THGA). Integrated platform, pretreated with Zr-Ir as permanent modifier, was elected as the optimum surface modification resulting in up to 250 firings. Two additional recoatings were possible without significant changes in the analytical performance (750 firings). For 20 μL of matrix-matched standard solutions using diluted (1:10) milk samples, typical correlation coefficients between integrated absorbance and analyte concentration (5.00-20.0 μg/L) was always better than 0.999. The levels of the analytes found in commercial milk samples were lower than the limit of detection: 2.9 μg/L As, 2.9 μg/L Bi, 1.8 μg/L Pb, 1.9 μg/L Sb, and 2.5 μg/L Se. Recoveries were found within the following intervals: 88-114% for As, 89-118% for Bi, 89-113% for Pb, 91-115% for Sb, and 92-115% for Se. The relative standard deviations (n = 12) were ≤2% (As), ≤ 5% (Bi), ≤ 1.4% (Pb), ≤ 3% (Sb), and 5% (Se), and the respective calculated characteristic masses were 54 pg As, 55 pg Bi, 40 pg Pb, 56 pg Sb, and 51 pg Se.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaça) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(N03)2. Pyrolysis and atomization temperature curves were established in a cachaça medium (1+1; v/v) containing 0.2% (v/v) HN03 and spiked with 20 μg L-1 As and Pb and 200 μg L-1Cu. The effect of the concentration of major elements usually present in cachaça matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 μg L-1As, 9.2 μg L-1 Cu, and 0.3 μg L-1Pb. The found concentrations varied from 0.81 to 4.28 μg L-1As, 0.28 to 382 mg L-1 Cu and 0.82 to 518 μg L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 μgL-1, 0.81 mgL-1, and 38.9 μgL-1concentrations.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The present work develops and optimizes a method to determine copper in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube coated internally with metallic rhodium and tungsten carbide that acts as chemical modifiers. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of copper) were 0.24 and 0.79 μg L -1 for the standard feces slurries and 0.26 and 0.87 μg L -1 for the standard feed slurries. The proposed method was applied in studies of absorption of copper in different fish feeds and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven. © Springer Science+Business Media, LLC 2008.
Resumo:
A simple procedure for the sequential determination of Cd, Cu and Pb in tea leaves by slurry introduction to thermospray flame furnace atomic absorption spectrometry was developed. Detection limits were 0.05 mg kg-1 for Cd, 2.1 mg kg-1 for Cu and 0.68 mg kg-1 for Pb using 0.67 % (m/v) slurries (100 mg/15 mL). © 2013 Springer Science+Business Media New York.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this work was to evaluate the efficiency of superficial applicationof limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soilacidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the offseasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag isan efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.