972 resultados para BRCA mutation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linkage between obesity-related phenotypes and the 2p21-23 locus has been reported previously. The urocortin (UCN) gene resides at this interval, and its protein decreases appetite behavior, suggesting that UCN may be a candidate gene for susceptibility to obesity. We localized the UCN gene by radiation hybrid mapping, and the surrounding markers were genotyped in a collection of French families. Evidence for linkage was shown between the marker D2S165 and leptin levels (LOD score, 1.34; P = 0.006) and between D2S2247 and the z-score of body mass index (LOD score, 1.829; P = 0.0019). The gene was screened for SNPs in 96 obese patients. Four new variants were established. Two single nucleotide polymorphisms were located in the promoter (-535 A-->G, -286 G-->A), one in intron 1 (+31 C-->G), and one in the 3'-untranslated region (+34 C-->T). Association studies in cohorts of 722 unrelated obese and 381 control subjects and transmission disequilibrium tests, performed for the two frequent promoter polymorphisms, in 120 families (894 individuals) showed that no association was present between these variants and obesity, obesity-related phenotypes, and diabetes. Thus, our analyses of the genetic variations of the UCN gene suggest that, at least in French Caucasians, they do not represent a major cause of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides presented by class I major histocompatibility complexes (MHCs) is the determining event in the specific cellular immune response against virus-infected cells or tumor cells. It is of great interest, therefore, to elucidate the molecular principles upon which the selectivity of a TCR is based. These principles can in turn be used to design therapeutic approaches, such as peptide-based immunotherapies of cancer. In this study, free energy simulation methods are used to analyze the binding free energy difference of a particular TCR (A6) for a wild-type peptide (Tax) and a mutant peptide (Tax P6A), both presented in HLA A2. The computed free energy difference is 2.9 kcal/mol, in good agreement with the experimental value. This makes possible the use of the simulation results for obtaining an understanding of the origin of the free energy difference which was not available from the experimental results. A free energy component analysis makes possible the decomposition of the free energy difference between the binding of the wild-type and mutant peptide into its components. Of particular interest is the fact that better solvation of the mutant peptide when bound to the MHC molecule is an important contribution to the greater affinity of the TCR for the latter. The results make possible identification of the residues of the TCR which are important for the selectivity. This provides an understanding of the molecular principles that govern the recognition. The possibility of using free energy simulations in designing peptide derivatives for cancer immunotherapy is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collection : Les études de la Documentation française

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: LEOPARD syndrome (LS) belongs to the family of neuro-cardio-facio-cutaneous syndromes, which include Neurofibromatosis-1 (NF1), Noonan syndrome, Costello Syndrome, cardio-facio-cutaneous syndrome, Noonan-like syndrome with loose anagen hair and Legius syndrome. These conditions are caused by mutations in genes encoding proteins involved in the RAS-MAPK cellular pathway. Clinical heterogeneity and phenotype overlaps across those different syndromes is already recognized. CASE PRESENTATION: We hereby report a heterozygous de novo mutation in the PTPN11 gene (c.1403C > T) manifesting with a clinical picture of LS during childhood, and later development of neuropathic pain with hypertrophic plexi, which are typically observed in NF1 but have not been reported in LS. CONCLUSION: LS caused by PTPN11 mutations may be associated with hypertrophic roots and plexi. Consequently, clinicians should be aware of the possible development of neuropathic pain and consider specific diagnostic work-up and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in seven unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits, thereby interfering with integrin maturation and/or function. Our study extends knowledge of GT and the pathophysiology of an integrin.