981 resultados para Auriferous mineralization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tectonic dynamics of metallogenetic fluids is a new crossed subjects among fluid geology, mineral deposit geology and structural geology, and is one of the major current projects of geosciences. It is mainly focused on structures and tectonic dynamic induced by fluid motion, variation of physical condition of fluids (such as temperature and pressure), and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphysim, which formed during interaction between fluids and rocks and have been perserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralizations. Three problems of tectonic dynamics of metallogenetic fluids, which have not been paid much attentions before, have been studied and discussed in this report. Three relative topics are including: 1)Double-fracturing induced by thermal stress and pressure of fluids and mineralization of Gold-copper in Breccia Pipe at the Qibaoshan in Shandong Province; 2)Parting structures induced by K-metasomatism in the Hougou area, northwestern Heibei province; 3)Migration mechanism of dissolved mass in Fe&S-rich fluids in Hougou gold deposit in Heibei province. After a synthetical study of two years, the author has made some new processes and progresses. The main new advances can be summaried as the following: 1)Thermal stress of fluids formed by temperature difference between fluids and country rock, during upword migration process of fluids with high temperature and pressure, can make rock to break, and some new fractures, which surfaces were uasally dry, formed. The breccia pipe at the Qibaoshan area in Shandong province has some distinct texture of fluidogenous tectonics, the breccia pipe is caused by double-fracturing induced by thermal stress and pressure, distribution of gold-corpper ore bodies are controlled powerfully by fluidogenous tectonics in the breccia pipe. 2)The author discovered a new kind of parting structures in K-alterated rocks in the northwestern part of Hebei province. The parting structures have some distinct geometry and fabrics, it is originated from the acting and reacting fores caused by K-metasomatism. Namely, the crystallizations of metasomatic K-feldspars are a volume expansion process, it would compress the relict fluid bodies, and the pressures in the relict fluid bodies gathered and increased, when the increased pressure of the fluid relict bodies is bigger than the strength of K-feldspars, the K-feldspars were broken with the strong compression, and the parting structures formed. 3)Space position replacing is a important transport pattern of dissolved mass in Fe&S-rich fluid. In addition, basing on views of tectonic dynamics of metallogenic fluids, and time-space texture of fluid-tectonic-lithogenetic-mineralization of the known gold-corpper mineral deposit and the subvolcanic complex at Qibaoshan area in Shandong province, this report does a detail prodict of position-shape-size of two concealed ore-bearing breccia pipe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Honghuagou gold field, Inner Mongolia, is selected as the study area for the dissertation. The geological background for gold mineralization, geology of gold deposits, ore-controlling factors, physical and chemical conditions, material sources, genesis and ore-forming epoch for gold mineralization are studied in the dissertation. Especially, the Early Mesozoic tectonic and magmatic activities and their relationship with gold mineralization are studied with special efforts. Based on the study, the criteria for ore-prospecting are systemically summarized, target areas for ore-prospecting are circled and their gold reserves is estimated. Based on the first discovery of Early Mesozoic ductile zone which show the detachment features and the study on the emplacement of Early Mesozoic maficintermediate dyke swarms, the author present that the studied area was mainly in extensional uplift state during Early Mesozoic. The tectonic evolution can be divided into two stages. The extension was dominated by ductile metamorphose at early stage, whose geodynamics was related with the post orogenic extension after the collision between the Northern China Plate with Siberia Plate. The extension at late stage was featured by the intrusion of diorite and the emplacement of dyke swarms, whose geodynamics was related with mantle uplift. The gold deposits in the area are just the products of the tectonic and magmatic activities resulted from Early Mesozoic extension. The plagio-amphibolite from Archean metamorphic rocks is partially melted under the influence of underplating caused by mantle uplift, result in the formation of diorite magma. The gold in metamorphic rocks will also be melted into magma pond, and ascend into the upper parts of crust along with the intrusion of magma. The gold-bearing hydrothermal fluids is formed during magma differentiation, and caused the precipitation and concentration of gold in favorable geological conditions, result in the formation of gold deposits. The fracture caused by the emplacement of dyke swarms break a path for the ascending and movement of hydrothermal fluids, some of them become parts of ore-controlling and host structure. The gold is thought to be formed in Early Mesozoic, not in Yanshanian epoch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author selected the geological and geochemical characteristics and the genesis of the Dazhuangzi gold deposit in the Pingdu City as the central content of the study. The author summarized geological features of the other gold deposits formed within the same geological setting along the margin of the Jiaolai pull-apart basin and compared these gold deposits with the Dazhuangzi gold deposit. On the basis of the first-hand data obtained from field investigation and from mining production reports, ore-controlling structures, geological characteristics and mineralization regularities of the Dazhuangzi gold deposit are studied in detail. According to the analyzing results of petrochemistry, trace element, rare earth element and fluid inclusion etc., the geochemical characteristics, the genesis and the ore-forming material source of the Dazhuangzi gold deposit and that of the other similar gold deposits along the margin of the Jiaolai Basin are proposed. The study results suggest that the Dazhuangzi gold deposit belongs to the typical interstratified glide breccia type gold deposit, which is controlled by the interstratified glide fault structure located along the margin of the Mesozoic pull-apart Jiaolai basin. The interstratified glide fault structure is in the outer part of unconformity belt between the overlying strata and the basement of the pull-apart basin, being along the marble strata of the Jingshan group. The formation of the ore-controlling structure is related closely with the evolution of the Jiaolai Basin in the Mesozoic. The ore-controlling structure underwent the structural stress changes from compressive to tensional and then to compressive stress with strike slipping features sequentially, which were coincided with the regional tectonic stress evolution. The interstratified glide breccia type gold mineralization mainly occurs in the siliceous-marble breccias and cataclastic rocks within the interstratified glide fault structure. The gold minerogenetic epoch is later than 120Ma when the ore-controlling structure was tensioning and strike-slipping. The occurrences of the ore controlling structure and the gold ore bodies are the same as that of the unconformity belt. The geological and geochemical studies show that the source of the ore-forming material is alike with that of the volcanic rocks of the Qingshan formation, which is widespread in the Jiaolai Basin. Both of them came from the deep crust or even the upper mantle. Based on the geological characteristics and the minerogenetic regularities of the Dazhuangzi gold deposit, a genetic model of the deposit is constructed. In addition, the author used the remote sensing image and exploration results of geochemical and geophysical methods to point out several prospecting areas for further exploration. Through comprehensive study on the interstratified glide fault structure and on the interstratified glide breccia type gold deposits along the Jiaolai pull-apart basin, three types of interstratified glide structures and related gold mineralization are set up according to evolution and distribution of main fault as well as related secondary faults in time and space. They are named as Penjiakuang type, Dazhuangzi type and Fayunkuang type. The author summarized up the minerogenetic characteristics and regularities controlled by these three different types of interstratified glide structures respectively, and set up a general minerogenetic model of the interstratified glide breccia type gold deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mafic-ultramafic layered intrusions in the Panxi, China contain large V-Ti-magnetite deposits. These layered intrusions are related with the Emeishan continental flood basalts in space and time. Two layered intrusions, Hongge and Xinjie have clear PGE mineralization at the base of the intrusions. Thus the detailed investigations of these two intrusions not only have a geological but also have an economic significance. This thesis aims to characterize the elemental and Sr-Nd isotopic features of diverse rock zones within the intrusion on the basis of systematic studies of the major, trace element and isotope ratios, therefore to constrain the petrogenesis, mantle source and evolution of the Hongge and Xinjie intrusions. Generally, both Hongge and Xinjie intrusions show the same Fe-Ti-rich and Si-M-poor characteristics. They are also enriched in rare-earth elements (REE) and large-ion lithophile elements (LILE) as well as in Sr-Nd isotope ratios (Hongge: initial Sr = 0.7056-0.7076, ε_(Nd)(t) and (Nd/Sm)_N-ε_(Nd)(t) plots, the Hongge intrusion has a similar elemental and isotopic features to the Emeishan low-Ti (LT) basalts, whereas the Xinjie intrusion was close to the Emeishan high-Ti (HT) basalt. Therefore, the Hongge intrusion may be co-genetic with the LT basalt, formed by the partial melting of the spinel-garnet transition mantle that had a slight enriched isotope character. In contrast, the Xinjie intrusion and the HT basalts are probably derived from the garnet-phases mantle with a primitive isotope character. The involvement of the components of mantle wedge into the source is considered to be the major reason of the REE and LILE enrichment and Nd isotope depletion in the Xinjie intrusion. In contrast with the systematic variations in TiO_2 content, Mg#, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios from the lower zone to upper zone, the different rock zones of the Hongge intrusion have no clear Sr-Nd isotope variations. This suggests that the Hongge intrusions were formed by the crystal fractionation from the same magma source. The rhythm may be formed by slow injection of the co-genetic magma during the crystal fractionation. The increase in K_2O and Al_2O_3 contents, REE abundance, and the degree of the REE fractionation in the base of the intrusion, together with the relatively low ε_(Nd)(t) value, may imply that the base of the Hongge intrusion was contaminated with the local crust rocks. Xinjie intrusion shows the clearly elemental and isotopic differences in diverse cumulus cycles. The observation of the systematic variations in TiO_2 content, Mg# value, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios in first cycle was not occurred in second cumulus cycle. In addition, the ε_(Nd)(t) value in second cumulus cycle is apparently higher than that of the first one. Thus the abruptly elemental and isotopic changes at the base of second cycle demonstrate that there is considerable new and depleted magma addition to the residue magma after the crystallization of the first cycle. These features are very similar to those of the well-known PGE-rich Bushveld and Stillwater layered intrusions. The PGE mineralization in Xinjie intrusion is much better than in Hongge intrusion. Therefore, the layered intrusion similar to the Xinjie in Panxi area posses the better prospects for the PGE deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Puziwan gold deposit is located at the northern boundary of the North China platform where there are very favorable ore-forming conditions. The deposit is a medium-sized gold deposit associated with silver and copper polymetallic minerallization which were closely related to cryptoexplosive processes and fluidization and underwent multi-epoch superposition of mineralization. The mineralization consists of cryptoexplosive breccia-type, fluidizing-type, porphyry-type, quartz vein-type, etc. The ore-controlling law of ore-bearing brecciated zone is systematically studied in the paper. The shape, scale and attitude of ore bodies are dominat in the upper, the ore bodies of fluidizing breccia-type are dominant in the upper and the middle part, the porphyry-type ore bodies are dominant in the bottom. The quartz vein-type ore bodies are impenetrated in all the brecciated zone. The metallogenic epoch of Puziwan gold deposit is collated and stipulated. The Rb-Sr isochron age of quartz porphyry (wall rock) is 233 Ma, refering to the Ar-Ar age of gold-bearing quartz, excluded the former conclusion that the so-called metallogenic epoch (245.9Ma) is in Indosinian epoch. The nonage metallogenic age of Buziwan gold deposit shoule be in the Yanshanian epoch (142.5Ma). By applying the sub-specimen sampling technique, the Rb-Sr isochron age of gold-bearing pyrites in late mineralization epoch is dated to be 64 Ma. In conclusion, the metallogenetic epoch of Puziwan gold deposit is in late Yanshanian-early Himalayan epoch. On the above basis, the metallogenic model of the "train type" and new texture model of ore deposit are established. by applying the methods of geology, shallow seismic exploration, remote sensing, partial geochemical extraction and the study of inclusions in the late granite porphyry, the author has made the metallogenic progosis in the depth and the prephery of Puziwan gold deposit and eight prospecting targets are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The East Shandong gold province is located on the southeastern margin of the North China Craton and features uplift in the north and depression in the south. The uplift area is made up of the Archaean Jiaodong Group, the Proterozoic Jingshan Group and Yanshannian granites. Most gold deposits in the uplift area are spatially associated with the Yanshannian granites. Two types of gold mineralization occur in the region: the quartz-vein type hosted in the Linglong granite suite, and the shear zone type hosted by either the Linglong granite or Guojialing granitoid suites. The mineralization ages are 113~126 Ma. The southern part of East Shandong contains the Mesozoic Jiaolai basin, which formed during regional extension. The basin is bounded by the Wulian-Rongcheng fault in the southeast and the Tanlu fault in the west. The Pengjiakuang, Fayunkuang and Dazhuangzi gold deposit occurs on the northeastern margin of the basin. The mineralization ages of these deposits are 110~128 Ma. This paper focuses on a low-angle detachment fault developed between the Proterozoic Jingshan Group metamorphic complex and the northeastern margin of the basin. Our field work shows that the distribution of the Pengjiakuang gold deposit was controlled by the detachment fault. Moreover, the Fayunkuang, Guocheng and Liaoshang gold deposits also occurr in the periphery of the basin, and their features are similar to Pengjiakuang gold deposit. The study of geological geochemistry of the gold deposits has shown: ①three-type gold deposit was situated in the Jiaodong area, including altered rock type (Jiaojia type), quartz vein type (Linglong type) and breccia type (Pengjiakuang type); the ore-forming materials and fluid for Pengjiakuang type gold deposit shows multiple source; ②the ore materials of Jiaojia and Linglong type deposits are mainly from deep source. The author has studied geological-geochemical dynamics of three types deposits in Jiaodong area. The study of tectonic dynamics shows that ore-forming structure differential stress values of Pengjiakuang gold deposit is 100 * 10~6~130 * 10~6 Pa, and that of Jiaojia gold deposit is 100 * 10~5~194 * 10~6 Pa. Dynamics of hydrothermal ore-forming fluid has also been studied in this paper. Author applies Bernoulli equation to dynamic model of hydrothermal fluid motion in brittle fracture and cracks (quartz vein type gold mineralization), and applies Darcy law to dynamic model of hydro thermal fluid motion in porous medium (altered rock type gold mineralization). Author does daring try in order to study quantitativly transport mechanism of hydrothermal ore-forming fluid in this paper. The study of fluid inclusions and crystal dynamics shows that reaction system of hydrothermal ore-forming includes three types, as follows: ore-forming reaction, controlling reaction and buffer controlling reaction. They depend on each other, controlling each other, which form a organic system. Further research shown that formation of ore shoots was controlled by coincidence processes of tectonic dynamic condition and thermodynamic evolution. This paper has summaried reginoal metallogenic laws and seted up metallogenic(dynamics) models for Jiaodong gold ore belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muanggang-Dajing area located in the south end of Dahinggan Mts is the only discovered tin-polymetallic minerzalization belt and the only tectonic magmaism zone with middle-upper grade tin-ore deposites in North China. Tin mineralization in this area is believed tn related to Yanshannian granites which is different from those in South China tin belt. Through geochemical study of these granites on the base of fieldworks , thin section observation, major and trace elements as well as isotopic composision determination, the isochronic sequence and petrogenetic series for the granites have been determined. Hi light ing on the petrogenesis of earlier Yanshannian of MOmarh granites, two groups granites with different Neodymium isotopic features have been distinguished. Both belonging to hi-K calc-alkalinic series, their nature of source rocks and.magma processing were restricted, we argue for that the two groups have get the isotopic differences from their sources-middle and later proterozoic juvenial crustal via mantle underplating. From then on , there is a pre-enrichment of tin in this area. The partial melting from a F rich soruses can dissolve and carry more tin from the same some due to the de-connection of melt, which supply the mineralization fluids after a thoroughly evolement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studied the metallotectonics, altered rocks, altered minerals and fluid inclusions. The conclusions are: (1)The gold deposits in Jiaodong district were formed quickly uplifted tectonic setting which was induced by the Mantle doming in Mesozoic era. (2)Both Jiaojia-type and Linglong-type gold mineralizations were formed in the same tectonic-fluid system. (3) The Ar-Ar age of the earlier stage of the gold mineralization is 114~116Ma. (4)The development of the plaiting ore-control tectonic system underwent four stagesrcounterclockwise ductile compresso-shearing, clockwise brittle tenso-shearing and counterclockwise brittle compresso-shearing and brittle normal faulting after mineralization. (5)The mineralization has five stages: quartz and k-feldspar stage, quartz and ferro-carbonate and pyrite stage, quartz and chalcopyrite stage, pyrite and sericite and quartz stage and carbonate stage, and they make up four ore-types: red ore, vein ore, mottled ore and grey ore. (6) The features of mineralizations and ore-forming fluids in different stages are different. But the ore-forming fluids are rich in Si, Fe, P_2O_5, H_2O, CO_2, SO_4~(2-), K~+, Na~+, Ca~(2+) and Cl~- in general and their salinities are from 4 to 18 NaClwt%. (7) The ore-forming fluids came mainly from the Mantle in early stage, then mainly from magma, and mainly from meteoric water in the last stage. (8) Au in the ore-forming fluid was mainly carried in the form of complex of Au and S. (9)The temperature of ore-forming fluid is from 350℃ to 120℃and its pressure is from 20MPa to 38MPa. (10)The gold vein composed by quartz, ferro-carbonate, chalcopyrite and pyrite (vein ore) was filled in the tensional fracture in the top of the magma dome. The disseminated ore bodies composed by pyrite, sericite and quartz (grey ore) was metasomatized in the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, which is placed in the flank top of magma dome. In the joint and fracture induced by the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, veiniet and stockwork ore (red ore) and veinlet-disseminated ore (mottled ore) composed by quartz and pyrite was formed. (ll)Fluid boiling maybe one of the form of the ore-forming substances precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from carbonate wall-rocks, skarn, ore of skarn type, later calcite vein, and ore of porphyry type in Shouwangfen copper deposit district were collected. Systematic study was carried out on carbon, oxygen, rubidium, strontium and sulfur isotope compositions of carbonates and sulfides in these samples. The first Isochron dating by the Rb-Sr isotopes in chalcopyrite of ore sub-sample was done as well. The following conclusions were obtained. The age (113.6±4.3Ma), obtained by Rb-Sr isotope isochron dating of chalcopyrite and pyrite from sub-sample of skarn ores, probably represents the true mineralization age of skarn ores. That demonstrates the genetic relationship between granodiorite in Shouwangfen complex and skarn copper ores. On the other hand, the Rb-Sr isochron age (73±15Ma) of chalcopyrite from porphyry ores is a little incredible because of bad synthesizing evaluation. But combined with other age data of igneous rocks, it implies the possibility of hydrothermal mineralization in connection with magma activity during the fourth period of Yanshanian in Hebei Province, even in the whole northern edge of Huabei continental block. Together from structure analysis of sulfide sub-samples, from pretreating preccedure of Rb-Sr isotope isochron and its' valuating, we found out that Rb-Sr isotope isochron of sulfide sub-samples is influenced by the crystal structure of sulfides. That is, sulfide ores with very big crystals are not suitable for sub-sample isochron. Carbon, oxygen, sulfur and strontium compositions, of different minerals in these two kinds of ores, imply that the ore-forming hydrothermal fluids were probably derived from magma deep under the crust. The calcite ~(87)Sr/~(86)Sr ratios from the porphyry are consistent to the initial 87Sr/86Sr ratio of the Rb-Sr isochron of chalcopyrite and pyrite in the skarn ore, indicating that these two kinds of ores have the same source characteristic, although the porphyry deposit was formed probably 40 million years later than the skarn one according to our dating results. Skarn and skarn ores are usually considered as interaction product between carbonate wall-rocks and magmatic fluids, but the carbon of the sedimentary carbonate seems not involved in the skarn ores. Considering the connection of magmatic processes and hydrothermal ore formation in the Shouwangfen district, particularly, the spatial distribution of skarn-type and porphyry-type ores, it is possible that the Shouwangfen ore district corresponds to a hydrothermal ore-forming system, which was promoted by high-intruding magmatic rocks. Systematic stable isotopic research can help to reveal the upper part of this hydrothermal ore-forming system, which mainly related to heated and circulating meteoric water, and the lower part principally related to ascending magmatic fluids. Both skarn and porphyry ore-bodies are formed by up-intruding magmatic fluids (even more deep mantle-derived fluids).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

REE geochemistry data from the Fanshan alunite deposit indicated that its ore-forming materials came chiefly from the country rocks, with δCe〉0 for alunite ores. According to the differences in δEu, the alunite ores were divided into three types: weak negative Eu anomaly, weak positive Eu anomaly and remarkable positive Eu anomaly. The phenomena of Ce-enrichment in the ores indicated that the Fanshan alunite deposit was formed in an oxidizing environment. Variations in fO2 are corresponding to those in δEu: Eu anomaly varies from negative to positive with increasing fO2. And two other important factors may impact the occurrence of Eu anomalies: the contents of alkaline feldspar and the protolith structure in the mineralization period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.