753 resultados para Aspergillus clavatus
Resumo:
Background: Aspergillosis has been identified as one of the hospital acquired infections but the contribution of water and inhouse air as possible sources of Aspergillus infection in immunocompromised individuals like HIV-TB patients have not been studied in any hospital setting in Nigeria. Objective: To identify and investigate genetic relationship between clinical and environmental Aspergillus species associated with HIV-TB co infected patients. Methods: DNA extraction, purification, amplification and sequencing of Internal Transcribed Spacer (ITS) genes were performed using standard protocols. Similarity search using BLAST on NCBI was used for species identification and MEGA 5.0 was used for phylogenetic analysis. Results: Analyses of sequenced ITS genes of selected fourteen (14) Aspergillus isolates identified in the GenBank database revealed Aspergillus niger (28.57%), Aspergillus tubingensis (7.14%), Aspergillus flavus (7.14%) and Aspergillus fumigatus (57.14%). Aspergillus in sputum of HIV patients were Aspergillus niger, A. fumigatus, A. tubingensis and A. flavus. Also, A. niger and A. fumigatus were identified from water and open-air. Phylogenetic analysis of sequences yielded genetic relatedness between clinical and environmental isolates. Conclusion: Water and air in health care settings in Nigeria are important sources of Aspergillus sp. for HIV-TB patients.
Resumo:
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 μg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 μg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 μg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.
Resumo:
Inaug.-diss.--Strassburg.
Resumo:
Faced with the continued emergence of antibiotic resistance to all known classes of antibiotics, a paradigm shift in approaches toward antifungal therapeutics is required. Well characterized in a broad spectrum of bacterial and fungal pathogens, biofilms are a key factor in limiting the effectiveness of conventional antibiotics. Therefore, therapeutics such as small molecules that prevent or disrupt biofilm formation would render pathogens susceptible to clearance by existing drugs. This is the first report describing the effect of the Pseudomonas aeruginosa alkylhydroxyquinolone interkingdom signal molecules 2-heptyl-3-hydroxy-4-quinolone and 2-heptyl-4-quinolone on biofilm formation in the important fungal pathogen Aspergillus fumigatus. Decoration of the anthranilate ring on the quinolone framework resulted in significant changes in the capacity of these chemical messages to suppress biofilm formation. Addition of methoxy or methyl groups at the C5–C7 positions led to retention of anti-biofilm activity, in some cases dependent on the alkyl chain length at position C2. In contrast, halogenation at either the C3 or C6 positions led to loss of activity, with one notable exception. Microscopic staining provided key insights into the structural impact of the parent and modified molecules, identifying lead compounds for further development.
Resumo:
Diversos trabalhos têm procurado aumentar a eficiência da hidrólise enzimática da biomassa lignocelulósica. Nesse contexto, o melhoramento de cepas produtoras de enzimas celulolíticas e hemicelulolíticas pode resultar em misturas enzimáticas mais eficientes. A linhagem parental de Aspergillus niger 3T5B8, referenciada como produtora de poligalacturonase, foi utilizada para o melhoramento genético visando aumentar a produção de celulases e hemicelulases. A produção das enzimas CMCase, xilanase, beta-glicosidase e poligalacturonase por fermentação submersa usando duas linhagens mutantes P49 e P83 foi avaliada e comparada com a linhagem parental. Os resultados mostraram um destaque para a cepa P83 com um aumento na produção de 56% de CMCase, 76% de beta-glicosidase, 23% de xilanase e 216% na poligalacturonase.
Resumo:
As lipases são enzimas que catalisam a hidrólise parcial ou total de triacilglicerois produzindo ácidos graxos livres, diacilglicerol, monoacilglicerol e glicerol. Este trabalho caracterizou a especificidade, a temperatura ótima e o pH ótimo das lipases obtidas por duas cepas de Aspergillus niger, sendo uma selvagem C e outra mutante 11T53A14. Os resultados mostram que os extratos enzimáticos apresentam especificidade diferentes, sendo a cepa selvagem mais específica para ácidos graxos de 8 carbonos e a cepa mutante inespecífica em relação ao tamanho do ácido graxo. As duas cepas apresentaram atividade em uma ampla faixa de pH, porém observou-se uma redução da atividade de mais de 50% em pH acima de 9,0. Em relação à temperatura, as lipases das duas cepas se mostraram mais ativas a 35°C.
Resumo:
A study was conducted to know the reduced sugar and branched chain amino acids concentration in substrate that fermented by Aspergillus oryzae. Branched chain amino acids represent amino acids that are very important for microorganism development, including yeast and ruminal microorganism as well as for the growth of the ruminant animal. The study was conducted using Completely Randomized Design (CRD). There were five kinds of supplements that were added into the media. So, that this experiment were A: control, B: A + 0.5% urea, C: B + 1% extract of cassava leaves, D: C + 1% isobutyrate, and E: D + 1.3% 2-methilbutyrate. There were five replicates in each treatment. The measured variables in these study were, colonies cell biomass of A. oryzae, reduced sugar, Crude Protein, and branched chain amino acid concentration. The results showed that the highest number of colonies, concentration of reduce sugar, and concentration of branched chain amino acids was obtain from the substrate of treatments D. (Animal Production 4(2): 83-88 (2002)Â Key words : Branched Chain Amino Acids, Branched Chain Volatile Fatty Acids, Aspergillus oryzae
Resumo:
Biomasa of agricultural residues are potensial as ruminant feeds. However due it is low palatability, digestibility and nutritive value limited their use. In order to improve their use, treatment need to be applied. Biological treatment by using microba seems to be an alternative because of their capability with no pollution problems. The first experiment aims to select the microorganism which have a potensial to degrade the crude fiber, based the production of reduction sugar. The second experiment aims to improve the protein and amino acid on rice straw, cassava, waste, and rice husk, by inoculated the starter of Candida utilis and or Sacharomyces cerevise. The second experiment has been conducted on Animal Nutrition and Feed Laboratory, Faculty of Animal Husbandry UNSOED for eight month Fermentation trial has been done in semi solid media, by the method of Kjic (1964), in Batch System, Variables measure were: (1) reduction sugar, (2) cellulose, (3) protein, (4) amino acids, (5) cellulase activity, (6) essensial mineral and (7) energy. Based on the all variables measured that were conclused that the quality of rice straw can be improved by mixed culture of T, viride – S. cerevise, the rice husk by A. niger – C. utilis, T. viride – C. utilis and A. niger – S cerevise while for cassava waste by A. niger – S. cerevise and A. niger – C. utilis  (Animal Production 1(1) : 10-16 (1999). Key Words: Waste Product, Energy, Microorganism
Resumo:
The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species (Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences (p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependant on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤ 0.4 m/s for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and Aspergillus niger, but not for Cladosporium cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples (p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, and the results obtained from the UVAPS and SMAS were not identical for the same samples.
Resumo:
Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.
Resumo:
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run and their airborne emissions sampled with closed-face cassettes. Dust samples were also 35 collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus and total Clostridium cluster 1 were quantified with specific qPCR protocols and emission rates were calculated. Clostridium botulinum, as well as antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gel electrophoresis (DGGE), image analysis and band sequencing. We demonstrated that emission of bacteria and moulds (Pen/Asp) can reach values as high as 1E05/min and that those emissions are not related to each other. The bag dust bacterial and mould content was also consistently across the vacuums we assessed, reaching up to 1E07 bacteria or moulds equivalent/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum were detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of moulds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.
Resumo:
Mycotoxins – from the Greek μύκης (mykes, mukos) “fungus” and the Latin (toxicum) “poison” – are a large and growing family of secondary metabolites and hence natural products produced by fungi, in particular by molds (1). It is estimated that well over 1,000 mycotoxins have been isolated and characterized so far, but this number will increase over the next few decades due the availability of more specialized analytical tools and the increasing number of fungi being isolated. However, the most important classes of fungi responsible for these compounds are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The biological activity of mycotoxins ranges from weak and/or sometimes positive effects such as antibacterial activity (e.g. penicillin derivatives derived from Penicillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g. aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins, citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines) activities (1, 2), which are discussed in detail in this volume.
Resumo:
This project developed and assessed a standard operating procedure for monitoring microbiological aerosol levels and dispersal from Australian industrial composting facilities. Development occurred via seasonal monitoring of such operations with evaluation of optimal microbial indicator organisms, sampling and analysis logistics. The resultant procedure allows practical end-user assessment of compost-associated bioaerosol levels, and potential health risks to proximal residential populations encroaching on such composting facilities and on-site industrial operations personnel.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.