944 resultados para Artefact removal
Resumo:
CO dissociation and O removal (water formation) are two important processes in the Fischer-Tropsch synthesis. In this study, both processes are studied on the flat and stepped Co(0 0 0 1) using density functional theory. It is found that (i) it is difficult for CO to dissociate on the flat Co(0 0 0 1) due to the high barrier of 1.04 eV relative to the CO molecule in the gas phase; (ii) the stepped Co(0 0 0 1) is much more favoured for CO dissociation; (iii) the first step in water formation, O + H --> OH, is unlikely to occur on the flat Co(0 0 0 1) due to the high barrier of 1.72 eV, however, this reaction can become feasible on steps where the barrier is reduced to 0.73 eV; and (iv) the barrier in the second step, OH + H --> H2O, on steps is higher than that on the flat surface. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This report describes a novel technology for arsenic removal from groundwater. The work was carried out in India in collaboratio with three Indian and three European partners. European partners include Leiden University of the Netherlands and Stuttgart University of Germany. The work was funded by The World Bank.
Resumo:
This work involved the treatment of industrial waste water from a nylon carpet printing plant. As dyeing of nylon is particularly difficult, acid dyes, fixing agents, thickeners, finishing agents, are required for successful colouration and cause major problems with the plant's effluent disposal in terms of chemical oxygen demand (COD). Granular activated carbon (GAC) Filtrasorb 400 was used to treat a simulated process plant effluent containing all the pollutants. Equilibrium isotherm experiments were established and experimental data obtained showed good empirical correlation with Langmuir isotherm theory. Column experimental data, in terms of COD were correlated using the bed depth service time (BDST) model. Solid phase loading in the columns were found to approach that in equilibrium studies indicating an efficient use of adsorbent. The results from the BDST model were then used to design a pilot adsorption rig at the plant. The performance of the pilot plant column were accurately predicted by scale-up from the bench scale columns. (C) 2001 Elsevier Science BN. All rights reserved.