851 resultados para Arquitectura teoría s.XVI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El cultivo de álamos en el Delta del Paraná, la tercera cuenca de importancia forestal de Argentina, es una actividad económica relevante que provee materia prima para las industrias del aserrado, debobinado, tableros de partículas y pulpa para papel. La producción de madera de álamo está amenazada por enfermedades, cuyo desarrollo se encuentra favorecido por las condiciones ambientales y la estrecha base genética de sus plantaciones comerciales. Entre ellas la roya es considerada la de mayor importancia y en varias oportunidades obligó al reemplazo total de los clones en cultivo. El objetivo de esta tesis fue evaluar el efecto de la roya sobre el crecimiento del año y del rebrote de la siguiente temporada utilizando como modelo tres clones de Populus deltoides con distinta arquitectura del canopeo y nivel de tolerancia. Se evaluó además el efecto sobre la densidad básica de la madera dada su importancia en la determinación de la calidad. A fin de conocer las bases fisiológicas del daño causado por la roya se estudiaron los cambios en la dinámica foliar, la intercepción de la luz, la fotosíntesis el contenido de clorofila y el reciclado del nitrógeno. Los resultados obtenidos indican que la reducción del crecimiento y la calidad de la madera atribuible a la enfermedad se deben a una disminución de la capacidad fotosintética y consecuentemente de la capacidad de fijar y translocar carbono, tanto para continuar el crecimiento del año como para acumular reservas en la parte aérea y radical. La reducción del sistema radical limita la capacidad de explorar el suelo y adquirir agua y nutrientes durante esa temporada de crecimiento. Esto, sumado a una retranslocación incompleta de nitrógeno debido a que las hojas enfermas caen con mayor cantidad de nitrógeno, reduce las reservas de carbono y de nitrógeno para iniciar el crecimiento y la capacidad de adquirir recursos desde el suelo al inicio de la temporada siguiente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La arquitectura radical es de vital importancia para la nutrición y performance de las plantas. Está determinada genéticamente y recibe gran influencia del ambiente. En esta tesis se evaluó el efecto de los exudados radicales en la determinación de la arquitectura radical. Se trabajó en condiciones de esterilidad con plantas de Arabidopsis thaliana ecotipos Ler y Col en placas de Petri ubicadas en un cuarto de crecimiento con luz y temperatura controlada. Se incluyeron tratamientos con agregado de carbón activado (CA), asumiendo que este compuesto retiene parte de los exudados radicales. Se incluyeron experimentos con una y tres plantas por placa y con tratamientos de dosis de fósforo. En los ensayos con una planta por placa, se observó que cuando crecían con CA presentaban menos raíces laterales (38 por ciento en Ler y 27 por ciento en Col) y más largas (83 por ciento en Ler y 96 por ciento en Col). Los responsables de esta respuesta habrían sido los metabolitos secundarios, que disminuyeron su concentración en un 90 por ciento cuando se agregó CA. En los ensayos con tres plantas y utilizando a la planta central como objetivo, se observó que las raíces de ambos ecotipos evitaban la competencia con las plantas de diferente ecotipo invadiendo la zona de crecimiento de la planta del mismo ecotipo cuando crecían con alta disponibilidad de fósforo (P) y sin presencia de CA. Cuando las plantas crecieron con CA o sin (P), no se observó ninguna modificación en la disposición de las raíces en el espacio. Estos resultados indicarían que los metabolitos secundarios están implicados en la identificación de la identidad de las raíces vecinas y en la regulación de la disposición de las raíces laterales en el espacio, en respuesta a la presencia de otras raíces laterales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinguiremos tres contribuciones de la Teoría Antropológica de lo didáctico a la formación del profesorado de secundaria: la manera de plantear el problema de la formación y delimitar el ámbito empírico en el que éste debe situarse y abordarse; la propuesta y experimentación de dispositivos de formación; y, finalmente, la puesta en evidencia de fenómenos que inciden en el desarrollo de esta formación dificultándola o facilitándola. Los resultados obtenidos durante estos últimos años con experiencias concretas de formación del profesorado de matemáticas de secundaria ponen de manifiesto algunas dolencias que no parecen poder remediarse sin una cooperación estrecha entre la propia formación, la investigación en didáctica de las matemáticas y este ente todavía desdibujado que es la profesión de profesor de matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esbozamos la teoría de la mediación semiótica con la cual es posible estudiar y comprender el papel de un profesor que decide aprovechar las características que tienen diferentes herramientas, por ejemplo los programas de geometría dinámica, usadas como mediadoras para favorecer procesos de aprendizaje, desde un punto de vista sociocultural.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La mayoría de personas involucradas directa o indirectamente con la Educación Matemática estamos de acuerdo en que la comprensión de conceptos es el aspecto más relevante en la enseñanza y el aprendizaje de las Matemáticas. Nuestro objetivo es diseñar y aplicar una entrevista semiestructurada de carácter socrático, para describir cómo comprenden el concepto de Continuidad cuatro estudiantes de cursos de cálculo diferencial en Instituciones oficiales de la ciudad de Medellín. Para alcanzar este objetivo utilizamos la entrevista semiestructurada de carácter socrático, como instrumento principal de recolección de información, así como observaciones y materiales escritos; la entrevista a su vez se convirtió en una estrategia metodológica para mejorar la comprensión de los estudiantes, en el marco de la Teoría de Pirie y Kieren, nuestro Marco Teórico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En estos momentos hay una gran actividad en las escuelas canarias alrededor de la resolución de problemas. Un objetivo importante en el aprendizaje de las matemáticas es el de "elaborar estrategias de identificación y resolución de problemas en los diversos campos del conocimiento y la experiencia, mediante procedimientos intuitivos y de razonamiento lógico, contrastándolas y reflexionando sobre el proceso seguido." La resolución de ejercicios y problemas es un proceso clave en la enseñanza de las matemáticas, mediante el cual los alumnos experimentan la potencia y la utilidad de las matemáticas en el mundo que los rodea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta investigación desarrolla material curricular para la implementación de algunas cuestiones de teoría de juegos en la educación secundaria en el ámbito de la matemática discreta. Para ello se diseñan actividades de carácter formativo que potencien valores de justicia, cooperación, negociación y convivencia democrática. Se trata de dar a conocer algunos modelos estratégicos que se pueden convertir en herramientas útiles para la resolución de conflictos en la vida cotidiana y, así, desarrollar las amplias posibilidades que aporta esta rama de las matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.