980 resultados para Archive of Underwater Imaging


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit using materials of negative dielectric and magnetic constants. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al 2000) and the Spherical Geodesic Waveguide (SGW)(Minano et all 2011) have been claimed to break the diffraction limit using positive refraction with a different meaning. In these cases, it has been considered the power transmission from a point source to a point receptor, which falls drastically when the receptor is displaced from the focus by a distance much smaller than the wavelength. Moreover, recent analysis of the SGW with defined object and image surfaces, which are both conical sections of the sphere, has shown that the system transmits images bellow diffraction limit. The key assumption is the use of a perfectly absorbing receptor called perfect drain. This receptor is capable to absorb all the radiation without reflection or scattering. Here, it is presented the COMSOL analysis of the SGW using a perfect drain that absorbs perfectly two modes. The design procedure for PD capable to absorb k modes is proposed, as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal imaging has been used to evaluate the response to drought and warm temperatures in a collection of Brachypodium distachyon lines adapted to varied environmental conditions. Thermographic records were able to separate lines from contrasting rainfall regimes. Genotypes from dryer environments showed warmer leaves under water deficit, which suggested that decreased evapotranspiration was related to a more intense stomatal closure. When irrigated and under high temperature conditions, drought-adapted lines showed cooler leaves than lines from wetter zones. The consistent, inverse thermographic response of lines to water stress and heat validates the reliability of this method to assess drought tolerance in this model cereal. It additionally supports the hypothesis that stomatal-based mechanisms are involved in natural variation for drought tolerance in Brachypodium. The study further suggests that these mechanisms are not constitutive but likely related to a more efficient closing response to avoid dehydration in adapted genotypes. Higher leaf temperature under water deficit seems a dependable criterion of drought tolerance, not only in B. distachyon but also in the main cereal crops and related grasses where thermography can facilitate high-throughput preliminary screening of tolerant materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron-emission tomography and functional MRS imaging signals can be analyzed to derive neurophysiological values of cerebral blood flow or volume and cerebral metabolic consumption rates of glucose (CMRGlc) or oxygen (CMRO2). Under basal physiological conditions in the adult mammalian brain, glucose oxidation is nearly complete so that the oxygen-to-glucose index (OGI), given by the ratio of CMRO2/CMRGlc, is close to the stoichiometric value of 6. However, a survey of functional imaging data suggests that the OGI is activity dependent, moving further below the oxidative value of 6 as activity is increased. Brain lactate concentrations also increase with stimulation. These results had led to the concept that brain activation is supported by anaerobic glucose metabolism, which was inconsistent with basal glucose oxidation. These differences are resolved here by a proposed model of glucose energetics, in which a fraction of glucose is cycled through the cerebral glycogen pool, a fraction that increases with degree of brain activation. The “glycogen shunt,” although energetically less efficient than glycolysis, is followed because of its ability to supply glial energy in milliseconds for rapid neurotransmitter clearance, as a consequence of which OGI is lowered and lactate is increased. The value of OGI observed is consistent with passive lactate efflux, driven by the observed lactate concentration, for the few experiments with complete data. Although the OGI changes during activation, the energies required per neurotransmitter release (neuronal) and clearance (glial) are constant over a wide range of brain activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.