991 resultados para Air Force
Resumo:
A model of pitch perception, called the Spatial Pitch Network or SPINET model, is developed and analyzed. The model neurally instantiates ideas front the spectral pitch modeling literature and joins them to basic neural network signal processing designs to simulate a broader range of perceptual pitch data than previous spectral models. The components of the model arc interpreted as peripheral mechanical and neural processing stages, which arc capable of being incorporated into a larger network architecture for separating multiple sound sources in the environment. The core of the new model transforms a spectral representation of an acoustic source into a spatial distribution of pitch strengths. The SPINET model uses a weighted "harmonic sieve" whereby the strength of activation of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch perception data involving mistuned components, shifted harmonics, and various types of continuous spectra including rippled noise. It is shown how the weighting functions produce the dominance region, how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the model helps to produce noise suppression, partial masking and edge pitch. Finally, it is shown how peripheral filtering and short term energy measurements produce a model pitch estimate that is sensitive to certain component phase relationships.
Resumo:
This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.
Resumo:
An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing or visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greaterr persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence: due to adaptation with a stimulus of like orientation, an increase or persistence due to adaptation with a stimulus of perpendicular orientation, and an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.
Resumo:
Illusory contours can be induced along direction approximately collinear to edges or approximately perpendicular to the ends of lines. Using a rating scale procedure we explored the relation between the two types of inducers by systematically varying the thickness of inducing elements to result in varying amounts of "edge-like" or "line-like" induction. Inducers for our illusory figures consisted of concentric rings with arcs missing. Observers judged the clarity and brightness of illusory figures as the number of arcs, their thicknesses, and spacings were parametrically varied. Degree of clarity and amount of induced brightness were both found to be inverted-U functions of the number of arcs. These results mandate that any valid model of illusory contour formation must account for interference effects between parallel lines or between those neural units responsible for completion of boundary signals in directions perpendicular to the ends of thin lines. Line width was found to have an efFect on both clarity and brightness, a finding inconsistent with those models which employ only completion perpendicular to inducer orientation.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.
Resumo:
This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.
Resumo:
Nonlinear metamaterials have been predicted to support new and exciting domains in the manipulation of light, including novel phase-matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. In this Letter, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index nonlinear metamaterial, along with two other novel phase-matching configurations, utilizing periodic poling to switch between the three phase-matching domains.
Resumo:
This work was supported by Toyota Motor Engineering and Manufacturing North America and partially supported by the Air Force Office of Scientific Research (Grant No. FA9550-09-1-0562).
Resumo:
Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.
Resumo:
Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.
Resumo:
Antecedentes. Pes Adulto planus (pie plano) es un problema común encontrado por muchos profesionales de la salud. A pesar de la percepción de que el pie plano puede causar dolor y deteriorar su función, la disponibilidad y el uso generalizado de diversos tratamientos, no hay consenso sobre la estrategia óptima de tratamiento. Objetivo. Evaluar la efectividad de las intervenciones conservadoras (no quirúrgicos) para pie plano en los adultos. Método. Se realizó una búsqueda sistemática de la literatura. Esto incluye: el Registro Cochrane Central de Ensayos Controlados; los Juicios CMSG Especializados Registro; una búsqueda electrónica se realizó utilizando MEDLINE (1960 a junio de 2012), EMBASE (1980 a junio de 2012), y CINAHL (1982 - junio de 2012). Revistas especializadas, listas de referencias de ensayos y artículos de revisión se realizaron búsquedas manuales. Criterios de selección: Ensayos aleatorios o cuasialeatorios de intervenciones de tratamiento para el pie plano en los adultos. Se excluyeron los ensayos que incluyeron patologías específicas como el dolor plantar del talón, las fracturas por sobrecarga de los metatarsianos, disfunción del tendón tibial posterior-, fracturas de tobillo, patologías del pie reumatoide, enfermedades neuromusculares y las complicaciones del pie diabético. Recopilación y análisis de datos: Dos autores seleccionaron de forma independiente los resultados de la búsqueda para identificar a aquellos que satisfacen los criterios de inclusión y evaluaron la calidad de los incluidos mediante una lista de control basado en la Evaluación de la Colaboración Cochrane de Riesgo. Esta herramienta se centró en el riesgo de la selección, el rendimiento, la detección, la heterogeneidad y el sesgo de notificación. Resultados. Cuatro ensayos, con 140 sujetos, cumplieron los criterios de inclusión para la revisión. Los cuatro fueron juzgados como de alto riesgo de sesgo en al menos un área, y también estaban en riesgo de sesgo incierto en al menos otra zona. Todos anotaron altamente en relación al sesgo de deserción, debido al corto seguimiento tiempos y diseños experimentales utilizados. Los datos no se agruparon debido al alto nivel de heterogeneidad identificada en las intervenciones evaluadas, los participantes seleccionados y medir los resultados. Los resultados de un estudio sugieren que después de cuatro semanas de uso ortesis puede resultar en una mejora significativa en vaivén lateral medio, y pueden resultar en una mejor, aunque no significativa, en general relacionados con la calidad de vida de los pies (Roma 2004). Un estudio (Redmond 2009) sugiere que su efecto sobre la distribución de la presión plantar en el pie puede no depender de si son personalizados o dispositivos prefabricados. Aunque este estudio se identificaron cambios significativos en algunas variables de presión plantar tanto con la costumbre y dispositivos prefabricados, otro (Esterman 2005) no encontró ningún efecto significativo de longitud ¾ ortesis prefabricadas sobre el dolor, la incidencia de lesiones, salud pie o de calidad de vida en un grupo de reclutas de la fuerza aérea. El cuarto estudio (Jung 2009) sugiere que el ejercicio de los músculos intrínsecos del pie puede mejorar el efecto de las ortesis. A pesar de estos resultados, ya que cada estudio incurrió riesgo de sesgo en al menos un área no se pueden sacar conclusiones
Resumo:
Even before the Russian air force launched its first strikes over Syria, there was already a Russian presence on the battleground. These were not the spetsnaz, Kremlin’s special forces, but war correspondents from the leading Russian media outlets. This was as clear a sign as any that the Russia’s priority has shifted from Ukraine, where these reporters spent most of the past 18 months, to Syria.
There is, however, no unanimity on Russia’s latest escalation in Syria. As Russian state TV stations report successes of Russia’s high-precision weapons projecting an image of a high-tech Russian military equal to the US, doubts persist about the latest adventure in the Middle East.
Resumo:
Tese de doutoramento, Psicologia (Psicologia da Social), Universidade de Lisboa, Faculdade de Psicologia, 2015
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica