879 resultados para Administrator belonging to the family


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inwardly rectifying potassium (K+) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by Gβγ subunits released from G protein heterotrimers of the Gi/o family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein α subunits (Giα1–3 and GoαA) in mediating coupling between various receptor systems (A1, α2A, D2S, M4, GABAB1a+2, and GABAB1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant Gi/oα subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A1, α2A) known to interact with all isoforms, Giα1–3 and GoαA can all support a significant degree of coupling to Kir3.1+3.2A. The M4 receptor appears to preferentially couple to Giα2 while another group of receptors (D2S, GABAB1a+2, GABAB1b+2) activates the channel predominantly through Gβγ liberated from GoA heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABAB1. Our data reveal selective pathways of receptor activation through different Gi/oα isoforms for stimulation of the G protein-gated inwardly rectifying K+ channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cbf1p is a Saccharomyces cerevisiae chromatin protein belonging to the basic region helix–loop–helix leucine zipper (bHLHzip) family of DNA binding proteins. Cbf1p binds to a conserved element in the 5′-flanking region of methionine biosynthetic genes and to centromere DNA element I (CDEI) of S.cerevisiae centromeric DNA. We have determined the apparent equilibrium dissociation constants of Cbf1p binding to all 16 CDEI DNAs in gel retardation assays. Binding constants of full-length Cbf1p vary between 1.7 and 3.8 nM. However, the dissociation constants of a Cbf1p deletion variant that has been shown to be fully sufficient for Cbf1p function in vivo vary in a range between 3.2 and 12 nM. In addition, native polyacrylamide gel electrophoresis revealed distinct changes in the 3D structure of the Cbf1p/CEN complexes. We also show that the previously reported DNA binding stimulation activity of the centromere protein p64 functions on both the Cbf1 full-length protein and a deletion variant containing only the bHLHzip domain of Cbf1p. Our results suggest that centromeric DNA outside the consensus CDEI sequence and interaction of Cbf1p with adjacent centromere proteins contribute to the complex formation between Cbf1p and CEN DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a mRNA differential screening of fibroblasts differing for the expression of c-fos we isolated a c-fos-induced growth factor (FIGF). The deduced protein sequence predicts that the cDNA codes for a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. Northern blot analysis shows that FIGF expression is strongly reduced in c-fos-deficient cells. Transfection of exogenous c-fos driven by a constitutive promoter restores the FIGF expression in these cells. In contrast, both PDGF and VEGF expression is unaffected by c-fos. FIGF is a secreted dimeric protein able to stimulate mitogenic activity in fibroblasts. FIGF overexpression induces morphological alterations in fibroblasts. The cells acquire a spindle-shaped morphology, become more refractive, disorganized, and detach from the plate. These results imply that FIGF is a downstream growth and morphogenic effector of c-fos. These results also suggest that the expression of FIGF in response to c-fos activation induces specific differentiation patterns and its aberrant activation contributes to the malignant phenotype of tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated an Arabidopsis thaliana gene that codes for a receptor related to antifungal pathogenesis-related (PR) proteins. The PR5K gene codes for a predicted 665-amino acid polypeptide that comprises an extracellular domain related to the PR5 proteins, a central transmembrane-spanning domain, and an intracellular protein-serine/threonine kinase. The extracellular domain of PR5K (PR5-like receptor kinase) is most highly related to acidic PR5 proteins that accumulate in the extracellular spaces of plants challenged with pathogenic microorganisms. The kinase domain of PR5K is related to a family of protein-serine/threonine kinases that are involved in the expression of self-incompatibility and disease resistance. PR5K transcripts accumulate at low levels in all tissues examined, although particularly high levels are present in roots and inflorescence stems. Treatments that induce authentic PR5 proteins had no effect on the level of PR5K transcripts, suggesting that the receptor forms part of a preexisting surveillance system. When the kinase domain of PR5K was expressed in Escherichia coli, the resulting polypeptide underwent autophosphorylation, consistent with its predicted enzyme activity. These results are consistent with PR5K encoding a functional receptor kinase. Moreover, the structural similarity between the extracellular domain of PR5K and the antimicrobial PR5- proteins suggests a possible interaction with common or related microbial targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast line (VCD) transformed by a chimeric jun oncogene but whose expression was undetectable in normal quail embryo fibroblasts. Furthermore, the gene was expressed in quail or chicken fibroblast cultures that were freshly transformed by retroviral constructs carrying various viral or cellular jun alleles and in chicken fibroblasts transformed by the avian retrovirus ASV17 carrying the original viral v-jun allele. However, its expression was undetectable in a variety of established avian cell lines or freshly prepared avian fibroblast cultures transformed by other oncogenes or a chemical carcinogen. The nucleotide and deduced amino acid sequences of the cDNA clone were not identical to any sequence entries in the data bases but revealed significant similarities to avian beta-keratin genes; the highest degree of amino acid sequence identity was 63%. The gene, which we termed bkj, may represent a direct or indirect target for jun function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E6-AP is a 100-kDa cellular protein that interacts with the E6 protein of the cancer-associated human papillomavirus types 16 and 18. The E6/E6-AP complex binds to and targets the p53 tumor-suppressor protein for ubiquitin-mediated proteolysis. E6-AP is an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. The amino acid sequence of E6-AP shows similarity to a number of protein sequences over an approximately 350-aa region corresponding to the carboxyl termini of both E6-AP and the E6-AP-related proteins. Of particular note is a conserved cysteine residue within the last 32-34 aa, which in E6-AP is likely to be the site of ubiquitin thioester formation. Two of the E6-AP-related proteins, a rat 100-kDa protein and a yeast 95-kDa protein (RSP5), both of previously unknown function, are shown here to form thioesters with ubiquitin. Mutation of the conserved cysteine residue of these proteins destroys their ability to accept ubiquitin. These data strongly suggest that the rat 100-kDa protein and RSP5, as well as the other E6-AP-related proteins, belong to a class of functionally related E3 ubiquitin-protein ligases, defined by a domain homologous to the E6-AP carboxyl terminus (hect domain).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GabR è un fattore di trascrizione chimerico appartenente alla famiglia dei MocR/GabR, costituito da un dominio N-terminale elica-giro-elica di legame al DNA e un dominio effettore e/o di oligomerizzazione al C-terminale. I due domini sono connessi da un linker flessibile di 29 aminoacidi. Il dominio C-terminale è strutturalmente omologo agli enzimi aminotransferasici fold-type I, i quali, utilizzando il piridossal-5’-fosfato (PLP) come cofattore, sono direttamente coinvolti nel metabolismo degli aminoacidi. L’interazione contemporanea di PLP e acido γ-aminobutirrico (GABA) a GabR fa sì che questa promuova la trascrizione di due geni, gabT e gabD, implicati nel metabolismo del GABA. GabR cristallizza come un omodimero con una configurazione testa-coda. Il legame con la regione promotrice gabTD avviene attraverso il riconoscimento specifico di due sequenze dirette e ripetute (ATACCA), separate da uno spacer di 34 bp. In questo studio sono state indagate le proprietà biochimiche, strutturali e di legame al DNA della proteina GabR di Bacillus subtilis. L’analisi spettroscopica dimostra che GabR interagisce con il PLP formando l’aldimina interna, mentre in presenza di GABA si ottiene l’aldimina esterna. L’interazione fra il promotore gabTD e le forme holo e apo di GabR è stata monitorata mediante Microscopia a Forza atomica (AFM). In queste due condizioni di legame è stata stimata una Kd di circa 40 ηM. La presenza di GABA invece, determinava un incremento di circa due volte della Kd, variazioni strutturali nei complessi GabR-DNA e una riduzione del compattamento del DNA alla proteina, indipendentemente dalla sequenza del promotore in esame. Al fine di valutare il ruolo delle caratteristiche topologiche del promotore, sono state inserite cinque e dieci bp all’interno della regione spacer che separa le due sequenze ripetute dirette riconosciute da GabR. I significativi cambiamenti topologici riscontrati nel frammento aggiunto di cinque bp si riflettono anche sulla forte riduzione dell’affinità di legame verso la proteina. Al contrario, l’inserzione di 10 bp provoca solamente l’allontanamento delle sequenze ripetute dirette. L’assenza quindi di cambiamenti significativi nella topologia di questo promotore fa sì che l’affinità di legame per GabR rimanga pressoché inalterata rispetto al promotore non mutato. L’analisi del potenziale elettrostatico superficiale di GabR mostra la presenza di una fascia carica positivamente che si estende lungo un’intera faccia della proteina. Per verificare l’importanza di questa caratteristica di GabR nel meccanismo di interazione al DNA, sono stati preparati ed indagati i mutanti R129Q e K362-366Q, in cui la carica positiva superficiale risultava indebolita. L’affinità di legame dei mutanti di GabR per il DNA era inferiore rispetto alla proteina non mutata, in particolar modo nel mutante K362-366Q. Le evidenze acquisite suggeriscono che la curvatura intrinseca del promotore ed il corretto orientamento delle sequenze sulla doppia elica, più della distanza che le separa, siano critici per sostenere l’interazione con GabR. Oltre a questo, la superficie positiva di GabR è richiesta per accomodare la curvatura del DNA sul corpo della proteina. Alla luce di questo, l’interazione GabR-gabTD è un esempio di come il riconoscimento specifico di sequenze, la topologia del DNA e le caratteristiche strutturali della proteina siano contemporaneamente necessarie per sostenere un’interazione proteina-DNA stabile.