537 resultados para Aberrations chromosomiques
Resumo:
Chromosome analysis of short-term culture of a basal cell carcinoma showed five clonal chromosome abnormalities, t(9;14)(q12 or q13;p11), del(1)(q23 or q25), trisomy 5, trisomy 7, and monosomy X. In addition, several nonclonal structural and numerical changes were seen in the tumor cells.
Resumo:
Chromosome analysis of short-term cultures from a basal cell carcinoma was performed. The analyzed karyotypes showed a pseudodiploid clone characterized by a der(4)t(4;14)(p14;p11) and a concomitant inversion of the same chromosome 4 involved in the t(4;14) with the breakpoints at p14 and q25.
Resumo:
Methods developed since 1976 for harvesting, preparing and banding fish chromosomes are now commonly used for taxonomic and phylogenetic studies, genetic control and chromosome manipulations in fish breeding and in monitoring aquatic pollutants by examining chromosomal aberrations. These studies have chiefly concerned common temperate freshwater species; the same procedures, when applied to marine and coldwater fish, often provide unsatisfactory results, especially in cell culture. A concerted effort should be made in marine fish, and to develop molecular cytogenetic methods to provide a more powerful tool to study chromosomal evolution. © 1991 BRILL.
Resumo:
We describe the cytogenetic study of two basal cell carcinomas. Only single chromosomally abnormal clones could be detected in both. In addition, many nonclonal changes were seen in the samples, which may represent small neoplastic clones or the result of a basic molecular defect induced by carcinogens.
Resumo:
The in vitro effect of Paracoccidioides brasiliensis exoantigen on the human lymphocytes cell cycle and chromosomes was studied. Human peripheral blood lymphocyte cultures from ten healthy, white, non-smoking, non-related adult males (mean age 31·3 ± 8·2 years) were studied. Blood cultures were treated with three exoantigen concentrations (0·25, 2·50 and 10·00 μg ml -1). At least 1000 metaphases were analysed at each concentration, for evaluation of numerical and structural chromosome aberrations (cA) and 30 000 for mitotic index (MI). Among the treated cultures, statistically significant differences in the frequencies of MI and cA were not observed. Nevertheless, when compared with control cultures, they all showed a significantly lower frequency of MI and higher frequency of cA. It is suggested that the detected alterations were caused by the exoantigen, its fractions or its metabolites. © 1996 Informa UK Ltd All rights reserved.
Resumo:
Several studies have demonstrated that lymphocytes from patients with Down syndrome (DS) exhibit an increased frequency of chromosome aberrations when they are exposed to ionizing radiation or to chemicals at the G0 or G1 phases of the cell cycle, but not at G2 when compared to normal subjects. To determine the susceptibility of DS lymphocytes at G2 phase, bleomycin, a radiomimetic agent, was used to induce DNA breaks in blood cultures from 24 Down syndrome patients. All the patients with DS showed free trisomy 21 (47,XX + 21 or 47,XY + 21). Individuals that showed an average number of chromatid breaks per cell higher than 0.8 were considered sensitive to the drug. No control child showed susceptibility to bleomycin, and among the 24 patients with DS, only one was sensitive to the drug. No significant difference was observed between the two groups, regarding chromatid break frequencies in treated G2 lymphocytes. The distribution of bleomycin-induced breaks in each group of chromosomes was similar for DS and controls. No significant difference was found in the response to bleomycin between male and female subjects. Probably, the main factor involved in chromosome sensitivity of lymphocytes from patients with DS is the phase of the cell cycle in which the cell is treated.
Resumo:
Chromosome analysis was performed on samples from 20 Brazilian patients with breast cancer. All the samples were from untreated patients who presented the clinical symptoms for months or years before surgical intervention. Six cases showed axillary lymph node metastases. Clonal chromosome abnormalities were detected in all cases. The numerical alterations most frequently observed involved the loss of chromosomes X, 19, 20, and 22 followed by gain of chromosomes 9 and 8. Among the structural anomalies observed, there was preferential involvement of chromosomes 11, 6, 1, 7, 3, and 12, supporting previous reports that these chromosomes may harbour genes of importance in the development of breast tumors. Two cases with a family history of breast cancer had in common total or partial trisomy 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
5-azacytidine (5-azaC) treatment combined with cytosine arabinoside (ara-C) or caffeine were performed in vitro in Chinese hamster cells, CHO-K1 (wild-type) and xrs-5 (mutant) cell lines, in order to compare the cell response to the induction of chromosomal aberrations. Exponentially growing cells were treated with 5-azaC (4-16 uM) for 1 h, the cells were washed and incubated for 7 h, and 500 uM caffeine or 5 uM ara-C were added to the cultures for the last 2 h. In both cell lines, 5-azaC induced a significantly increase (P<0.01) in the frequencies of aberrations; in the combined treatments (5-azaC + Ara-C), a significant reduction (P<0.05) was observed for the aberrations which were randomly distributed. Caffeine had no influence at the same conditions. 5-azaC induced-DNA lesions were probably processed at S/G2 phase in a common pathway in both cell lines, but alternatively, 5-azaC may cause xrs-5 cells to revert to the wild-type.
Resumo:
The Pervasive Developmental Disorders (PDDs) constitute a group of behavioral and neurobiological impairment conditions whose main features are delayed communicative and cognitive development. Genetic factors are reportedly associated with PDDs and particular genetic abnormalities are frequently found in specific diagnostic subgroups such as the autism spectrum disorders. This study evaluated cytogenetic and molecular parameters in 30 youths with autism or other PDDs. The fragile X syndrome was the most common genetic abnormality detected, presented by 1 patient with autism and 1 patient with PPD not-otherwise specified (PPD-NOS). One girl with PDD-NOS was found to have tetrasomy for the 15q11-q13 region, and one patient with autism exhibited in 2/100 metaphases an inv(7)(p15q36), thus suggesting a mosaicism 46,XX/46,XX,inv(7)(p15q36) or representing a coincidental finding. The high frequency of chromosomopathies support the hypothesis that PDDs may develop as a consequence to chromosomal abnormalities and justify the cytogenetic and molecular assessment in all patients with PDDs for establishment of diagnosis.
Resumo:
During the last years, the emission of heavy metals to the environment has increased, causing a severe negative impact to the ecosystems and seriously compromising human health due to their mutagenic potential. Tri- (III) and hexavalent (VI) chromium (Cr) constitute the oxidative states of the metal chromium that are active in living organisms. These two oxidation states of the chromium differ with regards to their cellular effects, mainly due to the different abilities they possess in relation to easy of transport through biological membranes. Cr VI is transported into the cell through transference channels of endogenous anions that are isostructural and isoelectronical to Cr VI, such as SO 4 -2 and HPO 4 -2. On the other hand, Cr III is unable to diffuse through the cell membrane. Its existence inside the cells is generally due to the reduction of Cr VI, the endocytosis, or the absortion by the cells via phagocytosis. Cr III acts directly on the DNA molecule, while Cr VI reacts little with this molecule. In the ecosystem, however, Cr VI is more dangerous since this is the form that presents greater reactivity with biological membranes, crossing them and being easily incorporated into the cell. In the cell it is biotransformed to Cr III, a potentially mutagenic molecule. In vivo and in vitro studies have shown that organisms exposed to Cr VI present greater induction to a variety of damages to the DNA molecule. Among the damages induced by Cr, changes in the structure of the DNA molecule have been reported, with breaks of the major chain and base oxidation. In the organisms, these alterations generate chromosomal aberrations, micronucleus formation, sister chromatid exchanges, and errors in DNA synthesis.
Resumo:
The clastogenic effect of the A. populnea leaves extract was tested in vivo on bone marrow cells of Wistar rats by evaluating the induction of chromosome aberrations and micronuclei induction on polychromatic erythrocytes. The extract was administered by gavage at doses of 300, 600 and 900mg/kg body weight. Experimental and control animals were submitted to euthanasia 24 h after the treatment. Under the conditions used, A. populnea leaves extract did not induce decrease in mitotic index and did not induce a statistically significant increase in the mean number of micronucleated polychromatic erythrocytes or chromosome aberrations in the bone marrow cells of Wistar rats. © 2007 The Japan Mendel Society.
Resumo:
Casearia sylvestris (Flacourtiaceae) is a plant which grows in wild and has been widely used in folk medicine. In this study, clastogenic/aneugenic properties of Casearia sylvestris crude ethanolic extract were evaluated using in vivo chromosomal aberrations (CAs) and micronucleus (MN) assays in rodents. The animals were treated by gavage with 3 concentrations of the extract: 150, 300 and 500 mg/kg body weight. Bone marrow cells from Wistar rats were collected 24 h after having been submitted to the MN and CAs test. Peripheral blood cells from Swiss mice were collected 48 and 72 h after having been submitted to the MN test. The results show that C. sylvestris extract does not induce a significant increase in mean values for micronucleated polychromatic erythrocytes (MNPCE) in Swiss mice and Wistar rats, or CAs in rat bone marrow cells, at the 3 tested doses, indicating that the extract showed no clastogenic/aneugenic effects on chromosomes of the rodent cells tested. © 2007 The Japan Mendel Society.
Resumo:
Autism spectrum disorders are severe psychiatric diseases commonly identified in the population. They are diagnosed during childhood and the etiology has been much debated due to their variations and complexity. Onset is early and characterized as communication and social interaction disorders and as repetitive and stereotyped behavior. Austistic disorders may occur together with various genetic and chromosomal diseases. Several chromosomal regions and genes are implicated in the predisposition for these diseases, in particular those with products expressed in the central nervous system. There are reports of autistic and mentally handicapped patients with submicroscopic subtelomeric alterations at the distal end of the long arm of chromosome 2. Additionally, there is evidence that alterations at 2q37 cause brain malformations that result in the autistic phenotype. These alterations are very small and not identified by routine cytogenetics to which patients are normally submitted, which may result in an underestimation of the diagnosis. This study aimed at evaluating the 2q37 region in patients with autistic disorders. Twenty patients were studied utilizing the fluorescence in situ hybridization technique with a specific probe for 2q37. All of them were also studied by the GTC banding technique to identify possible chromosomal diseases. No alterations were observed in the 2q37 region of the individuals studied, and no patient presented chromosomal diseases. This result may be due to the small sample size analyzed. The introduction of routine analysis of the 2q37 region for patients with autistic disorders depends on further studies. ©FUNPEC-RP.