996 resultados para AMORPHOUS SIO2
Resumo:
Plasma-arc technology was developed to dispose of chemical wastes from a chemical plant by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A pilot plant system with this technology was constructed to destroy two types of chemical wastes. The system included shredding, mixing, and feeding subsystems, a plasma-arc reactor of 150 kW, an off-gas burning subsystem, and a scrubbing subsystem. The additives (CaO, SiO2, and Fe) were added into the reactor to form vitrified slag and capture the hazardous elements. The molten slag was quickly quenched to form an amorphous glassy structure. A direct current (DC) experimental facility of 30kW with plasma-arc technology was also set up to study the pyrolysis process in the laboratory, and the experimental results showed the cooling speed is the most important factor for good vitrified structure of the slag. According to previous tests, the destruction and removal efficiency (DRE) for these chemical wastes was more than 99.999%, and the polychlorinated biphenyls (PCBs) concentration in the solid residues was in the range of 1.28 to 12.9mg/kg, which is far below the Chinese national emission limit for the hazardous wastes. A simplified electromagneto model for numerical simulation was developed to predict the temperature and velocity fields. This model can make satisfactory maximum temperature and velocity distributions in the arc region, as well as the results by the magneto hydrodynamic approach.
Resumo:
We have investigated the damage for ZrO2/SiO2 800 nm 45 degrees high-reflection mirror with femtosecond pulses. The damage morphologies and the evolution of ablation crater depths with laser fluences are dramatically different from that with pulse longer than a few tens of picoseconds. The ablation in multilayers occurs layer by layer, and not continuously as in the case of bulk single crystalline or amorphous materials. The weak point in damage is the interface between two layers. We also report its single-short damage thresholds for pulse durations ranging from 50 to 900 fs, which departs from the diffusion-dominated tau(1/2)(p) scaling. A developed avalanche model, including the production of conduction band electrons (CBE) and laser energy deposition, is applied to study the damage mechanisms. The theoretical results agree well with our measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Amorphous metals that form fully glassy parts over a few millimeters in thickness are still relatively new materials. Their glassy structure gives them particularly high strengths, high yield strains, high hardness values, high resilience, and low damping losses, but this can also result in an extremely low tolerance to the presence of flaws in the material. Since this glassy structure lacks the ordered crystal structure, it also lacks the crystalline defect (dislocations) that provides the micromechanism of toughening and flaw insensitivity in conventional metals. Without a sufficient and reliable toughness that results in a large tolerance of damage in the material, metallic glasses will struggle to be adopted commercially. Here, we identify the origin of toughness in metallic glass as the competition between the intrinsic toughening mechanism of shear banding ahead of a crack and crack propagation by the cavitation of the liquid inside the shear bands. We present a detailed study over the first three chapters mainly focusing on the process of shear banding; its crucial role in giving rise to one of the most damage-tolerant materials known, its extreme sensitivity to the configurational state of a glass with moderate toughness, and how the configurational state can be changed with the addition of minor elements. The last chapter is a novel investigation into the cavitation barrier in glass-forming liquids, the competing process to shear banding. The combination of our results represents an increased understanding of the major influences on the fracture toughness of metallic glasses and thus provides a path for the improvement and development of tougher metallic glasses.
Resumo:
Metallic glass has since its debut been of great research interest due to its profound scientific significance. Magnetic metallic glasses are of special interest because of their promising technological applications. In this thesis, we introduced a novel series of Fe-based alloys and offer a holistic review of the physics and properties of these alloys. A systematic alloy development and optimization method was introduced, with experimental implementation on transition metal based alloying system. A deep understanding on the influencing factors of glass forming ability was brought up and discussed, based on classical nucleation theory. Experimental data of the new Fe-based amorphous alloys were interpreted to further analyze those influencing factors, including reduced glass transition temperature, fragility, and liquid-crystal interface free energy. Various treatments (fluxing, overheating, etc.) were discussed for their impacts on the alloying systems' thermodynamics and glass forming ability. Multiple experimental characterization methods were discussed to measure the alloys' soft magnetic properties. In addition to theoretical and experimental investigation, we also gave a detailed numerical analysis on the rapid-discharge-heating-and-forming platform. It is a novel experimental system which offers extremely fast heating rate for calorimetric characterization and alloy deformation.
Resumo:
Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.
Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.
Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.
The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.
Resumo:
We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
采用传统熔融冷却的方法制备了透明Ni^2+掺杂ZnO-Al2O3-SiO2系玻璃,结合X-射线、吸收和荧光等测试手段,研究了不同热处理温度对Ni^2+掺杂透明ZnO-Al2O3-SiO2系微晶玻璃光学性质的影响。由X-射线衍射谱鉴定出微晶玻璃中析出的晶相为ZnAl2O4微晶,其尺寸在13nm以下。玻璃中没有发现近红外发光,而在微晶玻璃中存在宽带近红外发光,其可归属为八面体六配位Ni^2+离子的^3T2g(^3F)激发态向^3A2g(^3F)基态的跃迁。随热处理温度升高发光强度增强,而发射峰位则发生蓝移;荧