848 resultados para ALUMINIUM CHLORIDES
Resumo:
Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
Aluminium nitride (AlN) films grown with dimethylethylamine alane (DMEAA) are compared with the ones grown with trimethylaluminium (TMA). In the high-resolution x-ray diffraction Omega scans, the full width at half maximum (FWHM) of (0002) AlN films grown with DMEAA is about 0.70 deg, while the FWHM of (0002) AlN films grown with TMA is only 0.11 deg. The surface morphologies of the films are different, and the rms roughnesses of the surface are approximately identical. The rms roughness of AlN films grown with DMEAA is 47.4 nm, and grown with TMA is 69.4 nn. Although using DMEAA as the aluminium precursor cannot improve the AlN crystal quality, AlN growth can be reached at low temperature of 673 K. Thus, DMEAA is an alternative aluminium precursor to deposit AlN film at low growth temperatures.
Resumo:
Valence-band type Auger lines in Al doped and undoped ZnO were comparatively studied with the corresponding core level x-ray photoelectron spectrography (XPS) spectra as references. Then the shift trend of energy levels in the valence band was that p and p-s-d states move upwards but e and p-d states downwards with increasing Al concentration. The decreased energy of the Zn 3d state is larger than the increased energy of the 0 2p state, indicating the lowering of total energy. This may indicate that Al doping could induce the enhancement of p-d coupling in ZnO, which originates from stronger Al-O hybridization. The shifts of these states and the mechanism were confirmed by valence band XPS spectra and 0 K-edge x-ray absorption spectrography (XAS) spectra. Finally, some previously reported phenomena are explained based on the Al doping induced enhancement of p-d coupling.
Resumo:
Al K-shell X-ray yields are measured with highly charged Arq+ ions (q = 12-16) bombarding against aluminium. The energy range of the Ar ions is from 180 to 380 keV. K-shell ionization cross sections of aluminium are also obtained from the yields data. The experimental data is explained within the framework of 2p pi-2p sigma s rotational coupling. When Ar ions with 2p-shell vacancies are incident on aluminium, the vacancies begin to reduce. Meanwhile, collisions against Al atoms lead to the production of new 2p-shell vacancies of Ar ions. These Ar 2p-shell vacancies will transfer to the 1s orbit of an Al atom via 2p pi-2p sigma s rotational coupling leading to the emission of a K-shell X-ray of aluminiun. A model is constructed based on the base of the above physical scenario. The calculation results of the model are in agreement with the experimental results.
Resumo:
Synthetic routes to aluminium ethyl complexes supported by chiral tetradentate phenoxyamine (salan-type) ligands [Al(OC6H2(R-6-R-4)CH2)(2){CH3N(C6H10)NCH3}-C2H5] 7: R = H ; 5, 8: R = Cl; 6, 9: R = CH3) are reported. Enantiornerically pure salan ligands 1-3 with (R,R) configurations at their cyclohexane rings afforded the complexes 4, 5, and 6 as mixtures of two diastereoisomers (a and b). Each diastereoisomer a was, as determined by X-ray analysis, monomeric with a five-coordinated aluminium central core in the solid state, adopting a cis-(O,O) and cis-(Me,Me) ligand geometry. From the results of variable-temperature (VT) H-1 NMR in the temperature range of 220-335 K, H-1-H-1 NOESY at 220 K, and diffusion-ordered spectroscopy (DOSY), it is concluded that each diastereoisomer b is also monomeric with a five-coordinated aluminium central core.
Resumo:
Lithium acetylacetonate [Li(acac)] covered with aluminium was used as an efficient electron injection layer in organic light-emitting devices (OLEDs) consisting of NPB as the hole transport layer and Alq(3) as the electron transport and light emitting layer, resulting in lower turn- on voltage and increased current efficiency. The turn- on voltage (the voltage at a luminance of 1 cd m(-2)) was decreased from 5.5 V for the LiF/Al and 4.4 V for Ca/Al to 4.0 V for Li(acac)/Al, and the device current efficiency was enhanced from 4.71 and 5.2 to 7.0 cd A(-1). The performance tolerance to the layer thickness of Li(acac) is also better than that of the device with LiF. LiF can only be used when deposited as an ultra- thin layer because of its highly insulating nature, while the Li(acac) can be as thick as 5 nm without significantly affecting the EL performance. We suppose that the free lithium released from Li(acac) improves the electron injection when Li(acac) is covered with an Al cathode.
Resumo:
A new sterically hindered monooxychlorophosphine was synthesized and the complex generated in situ from its reaction with Pd-2(dba)(3) promoted the Suzuki-Miyaura reactions of arylboronic acids with aryl chlorides in good yields.
Resumo:
Reaction of two equivalents of tetrahydrofurfuryl indenyl lithium with anhydrous lanthanide trichlorides in THF afforded bis(tetrahydrofurfurylindenyl) lanthanide chlorides (C4H7OCH2C9H6)(2)LnCl, Ln=La(l), Pr(2), Lu(3). Complexes I and 3 are characterized by single-crystal analysis. The results of crystal structural determination reveal that they are 9-coordinate monomeric intramolecular complexes with a trans arrangement of both the sidearms and indenyl rings in the solid state. The effects of rare earth ionic radii on the structures Of (C4H7OCH2C9H6)(2)LnCl are discussed.
Resumo:
Lanthanocene chlorides (C4H7OCH2C9H6)(2)LnCl[Ln=Y(1); Ln=Gd(2)] were synthesized by the reaction of tetrahydrofurfurylindenyl lithium(in situ) with corresponding anhydrous lanthanide chorides in THF. The crystal structures of these two complexes were determined by X-ray diffraction and they were unsolvated monomeric complexes. They were stable in the air for several hours. Complexes 1 and 2 belong to the same crystal system (orthorhombic) and space group(P2(1)2(1)2(1)). The unit cell dimensions of complex 1 were a=1.042 52(9) nm, b=1.47455(12) nm, c=1.497 99(13) nm, Z=4, D-c=1.508 g/cm(3); The unit cell dimensions of complex 2 were a=1.037 01(10) nm, b=1.472 33(12) nm, c=1.513 54(14) nm, Z=4, D-c=1.699 g/cm(3). They have the same structure and different space configurations. The central metal atom is coordinated by two indenyl, two oxygen of the tetrahydrofurfuryl and one chlorine atom to form a distorted trigonal bipyramid.
Resumo:
Reaction of anhydrous lanthanide trichlorides with tetrahydrofurfuryl indenyl lithium in THF afforded bis(tetrahydrofurfurylindenyl) lanthanocene chlorides complexes (C4H7OCH2C9H6)(2) LnCl, Ln = Nd (1), Sm (2), Dy (3), Ho (4), Er (5), Yb (6). The X-ray crystallographic structures of all the six complexes were determined and these indicate that they are unsolvated nine-coordinate monomeric complexes with a trans arrangement of both the sidearm and indenyl rings in the solid state. They belong to the same crystal system (orthorhombic) and space group (P2(1)2(1)2(1)) with the same structure. Especially, they are more stable to air and moisture than the corresponding unsubstituted indenyl lanthanide complexes.
Synthesis, characterisation and catalytic activity of propionamide complexes of rare earth chlorides
Resumo:
Propionamide complexes of rare earth chlorides were synthesized, Formula of the complexes is LnCl(3). 3BA. The ligand is shown to behave as a normal amide donor With the oxygen of the carbonyl group coordinated to the metal ions. Binary system composed Elf propionamide and aluminum alkyl shows higher activity and stereospecificity for butadiene polymerization. The cis-1,4 content of polybutadiene is more than 98%.
Resumo:
[Al(C15H9O3)(3)](2) . 2CHCl(3) . 8H(2)O was synthesized, and its crystal structure was determined. It belongs to trigonal system, R3, a=b=1. 655 8(3) nm, c=3. 646 5(20) nm, alpha = beta = 90 degrees, gamma = 120 degrees, V = 8. 656 08(0. 005 86) nm(3). D-c = 1.45 g/cm(3), mu(Mo K alpha) = 3. 20 cm(-1), F (000) = 3 924. The crystal structure was solved by Patterson and Fourier techniques, and refined by a block-diagonal least-squares method. A total of 3 737 independent intensity data were collected, of which 1 033 with I greater than or equal to 3 sigma(I-0) were observed, R = 0. 091 8, Rw=0. 091 8. Al3+ ion was 6-coordinated, bound to six oxygen atoms from three 3-hydroxyflavones to form a distortional coordination octahedron.