822 resultados para 380304 Neurocognitive Patterns and Neural Networks
Resumo:
A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.
Learning new articulator trajectories for a speech production model using artificial neural networks
Resumo:
A pilot study was conducted to study the ability of an artificial neural network to predict the biomass of Peruvian anchoveta Engraulis ringens, given time series of earlier biomasses, and of environmental parameters (ocenographic data and predator abundances). Acceptable predictions of three months or more appear feasible after thorough scrutiny of the input data set.
Resumo:
In this paper we compare Multi-Layer Perceptrons (a neural network type) with Multivariate Linear Regression in predicting birthweight from nine perinatal variables which are thought to be related. Results show, that seven of the nine variables, i.e., gestational age, mother's body-mass index (BMI), sex of the baby, mother's height, smoking, parity and gravidity, are related to birthweight. We found no significant relationship between birthweight and each of the two variables, i.e., maternal age and social class.
Resumo:
Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.