946 resultados para 2 SPATIAL SCALES
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
Purpose: Despite the fundamental role of ecosystem goods and services in sustaining human activities, there is no harmonized and internationally agreed method for including them in life cycle assessment (LCA). The main goal of this study was to develop a globally applicable and spatially resolved method for assessing land-use impacts on the erosion regulation ecosystem service.Methods: Soil erosion depends much on location. Thus, unlike conventional LCA, the endpoint method was regionalized at the grid-cell level (5 arc-minutes, approximately 10×10 km2) to reflect the spatial conditions of the site. Spatially explicit characterization factors were not further aggregated at broader spatial scales. Results and discussion: Life cycle inventory data of topsoil and topsoil organic carbon (SOC) losses were interpreted at the endpoint level in terms of the ultimate damage to soil resources and ecosystem quality. Human health damages were excluded from the assessment. The method was tested on a case study of five three-year agricultural rotations, two of them with energy crops, grown in several locations in Spain. A large variation in soil and SOC losses was recorded in the inventory step, depending on climatic and edaphic conditions. The importance of using a spatially explicit model and characterization factors is shown in the case study.Conclusions and outlook: The regionalized assessment takes into account the differences in soil erosion-related environmental impacts caused by the great variability of soils. Taking this regionalized framework as the starting point, further research should focus on testing the applicability of the method trough the complete life cycle of a product and on determining an appropriate spatial scale at which to aggregate characterization factors, in order to deal with data gaps on location of processes, especially in the background system. Additional research should also focus on improving reliability of the method by quantifying and, insofar as it is possible, reducing uncertainty.
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Résumé La diminution de la biodiversité, à toutes les échelles spatiales et sur l'ensemble de la planète, compte parmi les problèmes les plus préoccupants de notre époque. En terme de conservation, il est aujourd'hui primordial de mieux comprendre les mécanismes qui créent et maintiennent la biodiversité dans les écosystèmes naturels ou anthropiques. La présente étude a pour principal objectif d'améliorer notre compréhension des patrons de biodiversité végétale et des mécanismes sous jacents, dans un écosystème complexe, riche en espèces et à forte valeur patrimoniale, les pâturages boisés jurassiens. Structure et échelle spatiales sont progressivement reconnues comme des dimensions incontournables dans l'étude des patrons de biodiversité. De plus, ces deux éléments jouent un rôle central dans plusieurs théories écologiques. Toutefois, peu d'hypothèses issues de simulations ou d'études théoriques concernant le lien entre structure spatiale du paysage et biodiversité ont été testées de façon empirique. De même, l'influence des différentes composantes de l'échelle spatiale sur les patrons de biodiversité est méconnue. Cette étude vise donc à tester quelques-unes de ces hypothèses et à explorer les patrons spatiaux de biodiversité dans un contexte multi-échelle, pour différentes mesures de biodiversité (richesse et composition en espèces) à l'aide de données de terrain. Ces données ont été collectées selon un plan d'échantillonnage hiérarchique. Dans un premier temps, nous avons testé l'hypothèse élémentaire selon laquelle la richesse spécifique (le nombre d'espèces sur une surface donnée) est liée à l'hétérogénéité environnementale quelque soit l'échelle. Nous avons décomposé l'hétérogénéité environnementale en deux parties, la variabilité des conditions environnementales et sa configuration spatiale. Nous avons montré que, en général, la richesse spécifique augmentait avec l'hétérogénéité de l'environnement : elle augmentait avec le nombre de types d'habitats et diminuait avec l'agrégation spatiale de ces habitats. Ces effets ont été observés à toutes les échelles mais leur nature variait en fonction de l'échelle, suggérant une modification des mécanismes. Dans un deuxième temps, la structure spatiale de la composition en espèces a été décomposée en relation avec 20 variables environnementales et 11 traits d'espèces. Nous avons utilisé la technique de partition de la variation et un descripteur spatial, récemment développé, donnant accès à une large gamme d'échelles spatiales. Nos résultats ont montré que la structure spatiale de la composition en espèces végétales était principalement liée à la topographie, aux échelles les plus grossières, et à la disponibilité en lumière, aux échelles les plus fines. La fraction non-environnementale de la variation spatiale de la composition spécifique avait une relation complexe avec plusieurs traits d'espèces suggérant un lien avec des processus biologiques tels que la dispersion, dépendant de l'échelle spatiale. Dans un dernier temps, nous avons testé, à plusieurs échelles spatiales, les relations entre trois composantes de la biodiversité : la richesse spécifique totale d'un échantillon (diversité gamma), la richesse spécifique moyenne (diversité alpha), mesurée sur des sous-échantillons, et les différences de composition spécifique entre les sous-échantillons (diversité beta). Les relations deux à deux entre les diversités alpha, beta et gamma ne suivaient pas les relations attendues, tout du moins à certaines échelles spatiales. Plusieurs de ces relations étaient fortement dépendantes de l'échelle. Nos résultats ont mis en évidence l'importance du rapport d'échelle (rapport entre la taille de l'échantillon et du sous-échantillon) lors de l'étude des patrons spatiaux de biodiversité. Ainsi, cette étude offre un nouvel aperçu des patrons spatiaux de biodiversité végétale et des mécanismes potentiels permettant la coexistence des espèces. Nos résultats suggèrent que les patrons de biodiversité ne peuvent être expliqués par une seule théorie, mais plutôt par une combinaison de théories. Ils ont également mis en évidence le rôle essentiel joué par la structure spatiale dans la détermination de la biodiversité, quelque soit le composant de la biodiversité considéré. Enfin, cette étude souligne l'importance de prendre en compte plusieurs échelles spatiales et différents constituants de l'échelle spatiale pour toute étude relative à la diversité spécifique. Abstract The world-wide loss of biodiversity at all scales has become a matter of urgent concern, and improving our understanding of local drivers of biodiversity in natural and anthropogenic ecosystems is now crucial for conservation. The main objective of this study was to further our comprehension of the driving forces controlling biodiversity patterns in a complex and diverse ecosystem of high conservation value, wooded pastures. Spatial pattern and scale are central to several ecological theories, and it is increasingly recognized that they must be taken -into consideration when studying biodiversity patterns. However, few hypotheses developed from simulations or theoretical studies have been tested using field data, and the evolution of biodiversity patterns with different scale components remains largely unknown. We test several such hypotheses and explore spatial patterns of biodiversity in a multi-scale context and using different measures of biodiversity (species richness and composition), with field data. Data were collected using a hierarchical sampling design. We first tested the simple hypothesis that species richness, the number of species in a given area, is related to environmental heterogeneity at all scales. We decomposed environmental heterogeneity into two parts: the variability of environmental conditions and its spatial configuration. We showed that species richness generally increased with environmental heterogeneity: species richness increased with increasing number of habitat types and with decreasing spatial aggregation of those habitats. Effects occurred at all scales but the nature of the effect changed with scale, suggesting a change in underlying mechanisms. We then decomposed the spatial structure of species composition in relation to environmental variables and species traits using variation partitioning and a recently developed spatial descriptor, allowing us to capture a wide range of spatial scales. We showed that the spatial structure of plant species composition was related to topography at the coarsest scales and insolation at finer scales. The non-environmental fraction of the spatial variation in species composition had a complex relationship with several species traits, suggesting a scale-dependent link to biological processes, particularly dispersal. Finally, we tested, at different spatial scales, the relationships between different components of biodiversity: total sample species richness (gamma diversity), mean species .richness (alpha diversity), measured in nested subsamples, and differences in species composition between subsamples (beta diversity). The pairwise relationships between alpha, beta and gamma diversity did not follow the expected patterns, at least at certain scales. Our result indicated a strong scale-dependency of several relationships, and highlighted the importance of the scale ratio when studying biodiversity patterns. Thus, our results bring new insights on the spatial patterns of biodiversity and the possible mechanisms allowing species coexistence. They suggest that biodiversity patterns cannot be explained by any single theory proposed in the literature, but a combination of theories is sufficient. Spatial structure plays a crucial role for all components of biodiversity. Results emphasize the importance of considering multiple spatial scales and multiple scale components when studying species diversity.
Resumo:
Abstract The giant hogweed (Heracleum mantegazzianum) has successfully invaded 19 European countries as well as parts of North America. It has become a problematic species due to its ability to displace native flora and to cause public health hazards. Applying population genetics to species invasion can help reconstruct invasion history and may promote more efficient management practice. We thus analysed levels of genetic variation and population genetic structure of H. mantegazzianum in an invaded area of the western Swiss Alps as well as in its native range (the Caucasus), using eight nuclear microsatellite loci together with plastid DNA markers and sequences. On both nuclear and plastid genomes, native populations exhibited significantly higher levels of genetic diversity compared to invasive populations, confirming an important founder event during the invasion process. Invasive populations were also significantly more differentiated than native populations. Bayesian clustering analysis identified five clusters in the native range that corresponded to geographically and ecologically separated groups. In the invaded range, 10 clusters occurred. Unlike native populations, invasive clusters were characterized by a mosaic pattern in the landscape, possibly caused by anthropogenic dispersal of the species via roads and direct collection for ornamental purposes. Lastly, our analyses revealed four main divergent groups in the western Swiss Alps, likely as a consequence of multiple independent establishments of H. mantegazzianum.
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
Resumo:
Inter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli"s eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species" reproductive performance at two spatial scales: territories within populations and populations over a large geographic area. At the territory level, those breeding pairs whose nestlings consumed similar diets to the overall population (i.e. moderate consumption of preferred prey, but complemented by alternative prey categories) or those disproportionally consuming preferred prey were more likely to fledge two chicks. An increase in the diet diversity, however, related negatively with productivity. The age and replacements of breeding pair members had also an influence on productivity, with more fledglings associated to adult pairs with few replacements, as expected in long-lived species. At the population level, mean productivity was higher in those population-years with lower dietary breadth and higher diet similarity among territories, which was related to an overall higher consumption of preferred prey. Thus, we revealed a correspondence in diet-fitness relationships at two spatial scales: territories and populations. We suggest that stable isotope analyses may be a powerful tool to monitor the diet of terrestrial avian predators on large spatio-temporal scales, which could serve to detect potential changes in the availability of those prey on which predators depend for breeding. We encourage ecologists and evolutionary and conservation biologists concerned with the multi-scale fitness consequences of inter-individual variation in resource use to employ similar stable isotope-based approaches, which can be successfully applied to complex ecosystems such as the Mediterranean.
Resumo:
Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.
Resumo:
Following protection measures implemented since the 1970s, large carnivores are currently increasing in number and returning to areas from which they were absent for decades or even centuries. Monitoring programmes for these species rely extensively on non-invasive sampling and genotyping. However, attempts to connect results of such studies at larger spatial or temporal scales often suffer from the incompatibility of genetic markers implemented by researchers in different laboratories. This is particularly critical for long-distance dispersers, revealing the need for harmonized monitoring schemes that would enable the understanding of gene flow and dispersal dynamics. Based on a review of genetic studies on grey wolves Canis lupus from Europe, we provide an overview of the genetic markers currently in use, and identify opportunities and hurdles for studies based on continent-scale datasets. Our results highlight an urgent need for harmonization of methods to enable transnational research based on data that have already been collected, and to allow these data to be linked to material collected in the future. We suggest timely standardization of newly developed genotyping approaches, and propose that action is directed towards the establishment of shared single nucleotide polymorphism panels, next-generation sequencing of microsatellites, a common reference sample collection and an online database for data exchange. Enhanced cooperation among genetic researchers dealing with large carnivores in consortia would facilitate streamlining of methods, their faster and wider adoption, and production of results at the large spatial scales that ultimately matter for the conservation of these charismatic species.
Resumo:
Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.), an iconic Mediterranean forest tree. Survival was used as a fitness proxy, and HFCs were assessed at a four-site common garden under contrasting environmental conditions (total of 16 288 trees). We found no significant correlations between genome-wide heterozygosity and fitness at any location, despite variation in inbreeding explaining a substantial proportion of the total variance for survival. However, four SNPs (including two non-synonymous mutations) were involved in significant associations with survival, in particular in the common gardens with higher environmental stress, as shown by a novel heterozygosity-fitness association test at the species-wide level. Fitness effects of SNPs involved in significant HFCs were stable across maritime pine gene pools naturally growing in distinct environments. These results led us to dismiss the general effect hypothesis and suggested a significant role of heterozygosity in specific candidate genes for increasing fitness in maritime pine. Our study highlights the importance of considering the species evolutionary and demographic history and different spatial scales and testing environments when assessing and interpreting HFCs.
Resumo:
Longline fisheries, oil spills, and offshore wind farms are some of the major threats increasing seabird mortality at sea, but the impact of these threats on specific populations has been difficult to determine so far. We tested the use of molecular markers, morphometric measures, and stable isotope (δ15N and δ13C) and trace element concentrations in the first primary feather (grown at the end of the breeding period) to assign the geographic origin of Calonectris shearwaters. Overall, we sampled birds from three taxa: 13 Mediterranean Cory's Shearwater (Calonectris diomedea diomedea) breeding sites, 10 Atlantic Cory's Shearwater (Calonectris diomedea borealis) breeding sites, and one Cape Verde Shearwater (C. edwardsii) breeding site. Assignment rates were investigated at three spatial scales: breeding colony, breeding archipelago, and taxa levels. Genetic analyses based on the mitochondrial control region (198 birds from 21 breeding colonies) correctly assigned 100% of birds to the three main taxa but failed in detecting geographic structuring at lower scales. Discriminant analyses based on trace elements composition achieved the best rate of correct assignment to colony (77.5%). Body measurements or stable isotopes mainly succeeded in assigning individuals among taxa (87.9% and 89.9%, respectively) but failed at the colony level (27.1% and 38.0%, respectively). Combining all three approaches (morphometrics, isotopes, and trace elements on 186 birds from 15 breeding colonies) substantially improved correct classifications (86.0%, 90.7%, and 100% among colonies, archipelagos, and taxa, respectively). Validations using two independent data sets and jackknife cross-validation confirmed the robustness of the combined approach in the colony assignment (62.5%, 58.8%, and 69.8% for each validation test, respectively). A preliminary application of the discriminant model based on stable isotope δ15N and δ13C values and trace elements (219 birds from 17 breeding sites) showed that 41 Cory's Shearwaters caught by western Mediterranean long-liners came mainly from breeding colonies in Menorca (48.8%), Ibiza (14.6%), and Crete (31.7%). Our findings show that combining analyses of trace elements and stable isotopes on feathers can achieve high rates of correct geographic assignment of birds in the marine environment, opening new prospects for the study of seabird mortality at sea.
Resumo:
Seabirds are facing a growing number of threats in both terrestrial and marine habitats, and many populations have experienced dramatic changes over past decades. Years of seabird research have improved our understanding of seabird populations and provided a broader understanding of marine ecological processes. In an effort to encourage future research and guide seabird conservation science, seabird researchers from 9 nations identified the 20 highest priority research questions and organized these into 6 general categories: (1) population dynamics, (2) spatial ecology, (3) tropho-dynamics, (4) fisheries interactions, (5) response to global change, and (6) management of anthropogenic impacts (focusing on invasive species, contaminants and protected areas). For each category, we provide an assessment of the current approaches, challenges and future directions. While this is not an exhaustive list of all research needed to address the myriad conservation challenges seabirds face, the results of this effort represent an important synthesis of current expert opinion across sub-disciplines within seabird ecology. As this synthesis highlights, research, in conjunction with direct management, education, and community engagement, can play an important role in facilitating the conservation and management of seabird populations and of the ocean ecosystems on which they and we depend.