946 resultados para 2,3-dicloro-6,7-dinitroquinoxalina
Resumo:
The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) angstrom, except for the methyl H atoms. In the crystal structure, intermolecular C-H center dot center dot center dot O hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular pi-pi stacking interactions [centroid-centroid distances = 3.685 (2) and 3.697 (2) angstrom] are observed between the parallel triazole rings.
Resumo:
Superconducting oxides of the Bi1.5Pb0.5(Ca, Sr)n+1CunO2n+4+δ series with n = 1, 2, 3 and 4 have been characterized. The superconducting transition temperature increases markedly with n up to n = 3, but the Tc of the n = 4 member is not much higher than that of the n = 3 member. The Tc does not change significantly in Bi2−xPbxCaSr2Cu2O8+δ with x (0.1 < x ≤ 0.5).
Resumo:
By inflating basic rhombuses, with a self-similarity principle, non-periodic tiling of 2-d planes is possible with 4, 5, 6, 7, 8, … -fold symmetries. As examples, non-periodic tilings with crystallographically allowed 4-fold symmetry and crystallographically forbidden 7-fold symmetry are presented in detail. The computed diffraction patterns of these tilings are also discussed.
Resumo:
A user friendly interactive computer program, CIRDIC, is developed which calculates the molar ellipticity and molar circular dichroic absorption coefficients from the CD spectrum. This, in combination with LOTUS 1-2-3 spread sheet, will give the spectra of above parameters vs wavelength. The code is implemented in MicroSoft FORTRAN 77 which runs on any IBM compatible PC under MSDOS environment.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).
Resumo:
1.2,3-Trihydroxybenzene (THB) reacts with 8-hydroxyquinoline (8HQ) in the solid state forming an orange-coloured charge transfer complex THB* (8HQ)(2). When the reaction was carried out in a petri dish, or when the vapours of 8HQ were allowed to react with solid THB (gravimetric study), the reaction product separated out as good quality, shiny single crystals. X-Ray diffraction studies on single crystals showed that they belong to the orthorhombic system with a = 15.408(1), b = 16.276(1), c = 7.825(1) Angstrom, Z = 4, D-x = 1.413 g cm(-3) and space group Pnaa. From the crystallographic evidence it has been found that the proton of the middle OH group of THB is transferred to the N atom of 8HQ. This accounts for the observed colour change. Kinetic studies on the solid state reaction showed that the 8HQ molecules diffuse towards THB, and the lateral diffusion occurs through surface migration, grain boundary diffusion and vapour phase diffusion. Gravimetric studies of the reaction between solid THB and 8HQ vapour showed that the diffusion of 8HQ molecules into the crystal lattice of THB has a higher energy of activation than that observed when the reactants are in contact. The nature of the crystal packing in the reaction product indicates diffusion of 8HQ molecules into the crystal lattice of THB along the c-axis, to occupy the cavities present between the THB molecules in the unit cell.
Resumo:
We have calculated the binding energy of a hydrogenic donor in a quantum well with potential shape proportional to \z\(2/3) as a function of the width of the quantum well and the barrier height under an applied uniform magnetic field along the a axis. As the well width decreases, the binding energy increases initially up to a critical well width (which is nearly the same for all magnetic fields) at which there is a turnover. The results are qualitatively similar to those of a hydrogenic donor in a rectangular well. We have also calculated [rho(2)](1/2) and [z(2)](1/2) for the donor electron. [rho(2)](1/2) is found to be strongly dependent on the magnetic field for a given well width and weakly dependent on the well width and the barrier height, for a given value of magnetic field [z(2)](1/2) is weakly dependent on the applied magnetic field. The probability of finding the donor electron inside the well shows a rapid decrease as the well width is reduced at nearly the well width at which the binding energy shows a maximum.
Resumo:
2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP, 3'-UMP, A>p, G>p, U>p, C>p, GpA>p and UpA>p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In the title compound, C(15)H(13)ClO(3)S, the chlorothiophene and dimethoxyphenyl groups are linked by a prop-2-en-1-one group. The C=C double bond exhibits an E conformation. The molecule is non-planar, with a dihedral angle of 31.12 (5)degrees between the chlorothiophene and dimethoxyphenyl rings. The methoxy group at position 3 is coplanar with the benzene ring to which it is attached, with a C-O-C-C torsion angle of -3.8 (3)degrees. The methoxy group attached at position 2 of the benzene ring is in a (+)synclinal conformation, as indicated by the C-O-C-C torsion angle of -73.6 (2)degrees. In the crystal, two different C-H center dot center dot center dot O intermolecular interactions generate chains of molecules extending along the b axis.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.
Resumo:
A new series of luminescent 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles containing three ring systems, viz. methoxy pyridine, benzonitrile and alkoxy benzene with variable alkoxy chain length, with bent-core structures were synthesized as potential mesogens and characterized by spectral techniques. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (PXRD) measurements. The study reveals that compounds with shorter chain lengths i.e. m = 4] exclusively exhibit the nematic phase while compounds with longer chain lengths i.e. m = 6-14 (only even)] show predominantly the orthorhombic columnar phase. Single crystal X-ray analysis of 4-(2-(4-butyloxy/octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitriles reveals that they possess slightly non-planar unsymmetrical bent structures and their molecular packing consists of nonconventional H-bond interactions; it also explains the observed liquid crystalline phase. An optical study indicates that the title compounds are good blue emitting materials showing absorption and emission bands in the range 335-345 nm and 415-460 nm, respectively. An electrochemical study of 4-(2-(4-octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitrile shows a band gap of 1.89 eV with HOMO and LUMO energy levels of -5.06 and -3.17 eV, respectively. Also, density functional theory (DFT) calculations confirm its optimized geometry, electronic absorption and frontier molecular orbital distributions.