193 resultados para yttria
Resumo:
The mechanisms of densification and creep were examined during spark plasma sintering (SPS) of alumina doped with a low and high level of zirconia or yttria, over a temperature range of 1173-1573 K and stresses between 25 and 100 MPa. Large additions of yttria led clearly to in situ reactions during SPS and the formation of a yttrium-aluminum garnet phase. Dopants generally lead to a reduction in the densification rate, with substantial reductions noted in samples with similar to 5.5 vol% second phase. In contrast to a stress exponent of n similar to 1 for pure alumina, the doped aluminas displayed n similar to 2 corresponding to an interface-controlled diffusion process. The higher activation energies in the composites are consistent with previous data on creep and changes in the interfacial energies. The results reveal a compensation effect, such that an increase in the activation energy is accompanied by a corresponding increase in the pre-exponential term for diffusion.
Resumo:
8mol% yttria-stabilized zirconia (8YSZ) is an extensively studied solid electrolyte. But there is no consistency in the reported ionic conductivity values of 8YSZ thin films. Interfacial segregation in YSZ thin films can affect its ionic conductivity by locally altering the surface chemistry. This article presents the effects of annealing temperature and film thickness on free surface yttria segregation behavior in 8YSZ thin film by Angle Resolved XPS and its influence on the ionic conductivity of sputtered 8YSZ thin films. Surface yttria concentration of about 32, 20, and 9mol% have been found in 40nm 8YSZ films annealed at 1273, 1173, and 1073K, respectively. Yttria segregation is found to increase with increase in annealing temperature and film thickness. Ionic conductivities of 0.23, 0.16, and 0.08Scm(-1) are observed at 923K for 40nm 8YSZ films annealed at 1073, 1173, and 1273K, respectively. The decrease in conductivity with increase in annealing temperature is attributed to the increased yttria segregation with annealing. Neither segregation nor film thickness is found to affect the activation energy of oxygen ion conduction. Target purity is found to play a key role in determining free surface yttria segregation in 8YSZ thin films.
Resumo:
Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 degrees C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)(3)), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)(4)), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.
Resumo:
8YSZ fibers were synthesized by calcination of PVP/zirconium oxychloride/yttrium nitrate composite fibers (PVP-Precursor) obtained by electrospinning. Scanning electron microscopy (SEM) indicated that the 8YSZ fibers are hollow and the gas released during organic binder decomposition resulted in the formation of hollow center in fibers
Resumo:
Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.
Resumo:
A dense clad overlay with chemical inertness was achieved on top of the plasma-sprayed YSZ thermal barrier coatings by laser in order to protect them from hot-corrosion attack. The Al2O3-clad YSZ coating exhibited good hot-corrosion behavior in contact with salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) for a longtime of 100 h at 1173 K. The LaPO4-clad YSZ coating showed corrosion resistance inferior to the Al2O3-clad one. Yttria was leached from YSZ by reaction between Y2O3 and V2O5, which caused progressive destabilization transformation of YSZ from tetragonal (t) to monoclinic (m) phase. The chemical inertness of the clad layers and the restrained infiltration of the molten corrosive salts by the dense clad layers were primary contributions to improvement of the hot-corrosion resistances.
Resumo:
Plasma-sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser-glazed using a continuous-wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser-glazing. The hot corrosion resistances of the plasma-sprayed and laser-glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 degrees C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as-sprayed coating, while the as-glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as-sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser-glazing.
Resumo:
Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.