966 resultados para wide gain bandwidth


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A zero-pole cancellation transimpedance amplifier (TIA) has been realized in 0.35 μm RF CMOS tech nology for Gigabit Ethernet applications. The TIA exploits a zero-pole cancellation configuration to isolate the input parasitic capacitance including photodiode capacitance from bandwidth deterioration. Simulation results show that the proposed TIA has a bandwidth of 1.9 GHz and a transimpedance gain of 65 dB·Ω for 1.5 pF photodiode capaci tance, with a gain-bandwidth product of 3.4 THz·Ω. Even with 2 pF photodiode capacitance, the bandwidth exhibits a decline of only 300 MHz, confirming the mechanism of the zero-pole cancellation configuration. The input resis tance is 50 Ω, and the average input noise current spectral density is 9.7 pA/(Hz)~(1/2). Testing results shows that the eye diagram at 1 Gb/s is wide open. The chip dissipates 17 mW under a single 3.3 V supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we report on the significance of gate-source/drain extension region (also known as underlap design) optimization in double gate (DG) FETs to improve the performance of an operational transconductance amplifier (OTA). It is demonstrated that high values of intrinsic voltage gain (A(VO_OTA)) > 55 dB and unity gain frequency (f(T_OTA)) similar to 57 GHz in a folded cascode OTA can be achieved with gate-underlap channel design in 60 nm DG MOSFETs. These values correspond to 15 dB improvement in A(VO_OTA) and three fold enhancement in f(T_OTA) over a conventional non-underlap design. OTA performance based on underlap single gate SOI MOSFETs realized in ultra-thin body (UTB) and ultra-thin body BOX (UTBB) technologies is also evaluated. A(VO_OTA) values exhibited by a DG MOSFET-based OTA are 1.3-1.6 times higher as compared to a conventional UTB/UTBB single gate OTA. f(T_OTA) values for DG OTA are 10 GHz higher for UTB OTAs whereas a twofold improvement is observed with respect to UTBB OTAs. The simultaneous improvement in A(VO_OTA) and f(T_OTA) highlights the usefulness of underlap channel architecture in improving gain-bandwidth trade-off in analog circuit design. Underlap channel OTAs demonstrate high degree of tolerance to misalignment/oversize between front and back gates without compromising the performance, thus relaxing crucial process/technology-dependent parameters to achieve 'idealized' DG MOSFETs. Results show that underlap OTAs designed with a spacer-to-straggle (s/sigma) ratio of 3.2 and operated below a bias current (IBIAS) of 80 mu A demonstrate optimum performance. The present work provides new opportunities for realizing future ultra-wide band OTA design with underlap DG MOSFETs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new dual port microstrip antenna geometry for dual frequency operation is presented. The structure consists of the intersection of two circles of the same radius with their centres displaced by a small fraction of the wavelength . This antenna provides wide impedance bandwidth and excellent isolation between its ports. The gain of the antenna is comparable to that of a standard circular microstrip antenna operating at the same resonant frequency. A theoretical analysis for calculating the resonant frequencies of the two ports is also presented

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequency­doubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable all­room-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasi­Littrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadly­tunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 degrees C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 594 nm (D-5(0) -> F-7(1)). The evaluated Commission International de l'Eclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition probability (A(tot)), radiative lifetime (tau(rad)), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were calculated using the Judd-Ofelt theory. The experimental decay curves of the D-5(0) level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (tau(exp)), low non-radiative relaxation rate (W-NR), high quantum efficiency (eta) and better optical gain (sigma(e) x tau(rad)). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A multi phase, delay-locked loop (DLL) based frequency synthesizer is designed for harmonic rejection mixing in reconfigurable radios. This frequency synthesizer uses a 1 GHz input reference frequency, and achieves <= 20ns settling time by utilizing a wide loop bandwidth. The circuit has been designed in 0.13-mu m CMOS technology. It is designed for a frequency range of 500 MHz to 3 GHz with stuck/harmonic lock removal assist. Index Terms-stuck lock, harmonic lock, delay-locked loops, multi phase, phase detector, frequency synthesis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Closed loop control of a grid connected VSI requires line current control and dc bus voltage control. The closed loop system comprising PR current controller and grid connected VSI with LCL filter is a higher order system. Closed loop control gain expressions are therefore difficult to obtain directly for such systems. In this work a simplified approach has been adopted to find current and voltage controller gain expressions for a 3 phase 4 wire grid connected VSI with LCL filter. The closed loop system considered here utilises PR current controller in natural reference frame and PI controller for dc bus voltage control. Asymptotic frequency response plot and gain bandwidth requirements of the system have been used for current control and voltage controller design. A simplified lower order model, derived for closed loop current control, is used for the dc bus voltage controller design. The adopted design method has been verified through experiments by comparison of the time domain response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The properties of noncollinear optical parametric amplification based on quasi-phase matching of periodically poled KTP are investigated theoretically. Our numerical simulation focuses on the gain spectrum of dependence upon noncollinear angle, crystal temperature and crystal angle. At the optimal noncollinear angle and grating period with fixed temperature, there exists a broadest gain bandwidth about 130 nm at signal wavelength of 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental results of the Talbot effect of an amplitude grating under femtosecond laser illumination are reported. Compared with Talbot image under continuous wave (CW) illumination, Talbot images under femtosecond laser illumination are different due to the wide spectral bandwidth and the Talbot images are more distorted at longer Talbot distances. The spectrums and the pulsewidths of femtosecond laser pulses are measured with the frequency-resolved optical gating (FROG) apparatus. Experimental results are in good agreement with the theoretical analysis. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为了充分利用放大介质的增益带宽,获得脉宽更短,功率更高的输出脉冲,需要将输入到主放大链的种子脉冲进行光谱整形来补偿放大过程中的增益窄化效应。提出了利用变栅距反射光栅实现中心波长1053nm,谱宽6nm啁啾脉冲的光谱整形。运用严格的光栅衍射耦合波理论分析光栅的衍射特性,发现该方案不会引入相位畸变。分别计算和分析了刻槽深度、入射角大小、光栅周期以及入射光波长的变化对衍射效率的影响,通过选取适当的光栅参量可获得0.5%~84%的光谱调制深度。