991 resultados para weibull distribution
Resumo:
A large number of models have been derived from the two-parameter Weibull distribution and are referred to as Weibull models. They exhibit a wide range of shapes for the density and hazard functions, which makes them suitable for modelling complex failure data sets. The WPP and IWPP plot allows one to determine in a systematic manner if one or more of these models are suitable for modelling a given data set. This paper deals with this topic.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In this paper we study the n-fold multiplicative model involving Weibull distributions and examine some properties of the model. These include the shapes for the density and failure rate functions and the WPP plot. These allow one to decide if a given data set can be adequately modelled by the model. We also discuss the estimation of model parameters based on the WPP plot. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper deals with an n-fold Weibull competing risk model. A characterisation of the WPP plot is given along with estimation of model parameters when modelling a given data set. These are illustrated through two examples. A study of the different possible shapes for the density and failure rate functions is also presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998) This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Gawk 2009) which contains several lifetime models such as exponential geometric (Adamidis and Loukas 1998) exponential Poisson (Kus 2007) and exponential logarithmic (Tahmasbi and Rezaei 2008) distributions The hazard function of our class can be increasing decreasing and upside down bathtub shaped among others while the hazard function of an EPS distribution is only decreasing We obtain several properties of the WPS distributions such as moments order statistics estimation by maximum likelihood and inference for a large sample Furthermore the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints Special distributions are studied in some detail Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions (C) 2010 Elsevier B V All rights reserved
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
In Bayesian Inference it is often desirable to have a posterior density reflecting mainly the information from sample data. To achieve this purpose it is important to employ prior densities which add little information to the sample. We have in the literature many such prior densities, for example, Jeffreys (1967), Lindley (1956); (1961), Hartigan (1964), Bernardo (1979), Zellner (1984), Tibshirani (1989), etc. In the present article, we compare the posterior densities of the reliability function by using Jeffreys, the maximal data information (Zellner, 1984), Tibshirani's, and reference priors for the reliability function R(t) in a Weibull distribution.
Resumo:
This paper deals with the joint economic design of x̄ and R charts when the occurrence times of assignable causes follow Weibull distributions with increasing failure rates. The variable quality characteristic is assumed to be normally distributed and the process is subject to two independent assignable causes (such as tool wear-out, overheating, or vibration). One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. A cost model is developed and a non-uniform sampling interval scheme is adopted. A two-step search procedure is employed to determine the optimum design parameters. Finally, a sensitivity analysis of the model is conducted, and the cost savings associated with the use of non-uniform sampling intervals instead of constant sampling intervals are evaluated.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
In this paper, we proposed a new three-parameter long-term lifetime distribution induced by a latent complementary risk framework with decreasing, increasing and unimodal hazard function, the long-term complementary exponential geometric distribution. The new distribution arises from latent competing risk scenarios, where the lifetime associated scenario, with a particular risk, is not observable, rather we observe only the maximum lifetime value among all risks, and the presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its reliability, hazard and quantile functions and order statistics. The parameter estimation is based on the usual maximum-likelihood approach. A simulation study assesses the performance of the estimation procedure. We compare the new distribution with its particular cases, as well as with the long-term Weibull distribution on three real data sets, observing its potential and competitiveness in comparison with some usual long-term lifetime distributions.
Resumo:
In many applications of lifetime data analysis, it is important to perform inferences about the change-point of the hazard function. The change-point could be a maximum for unimodal hazard functions or a minimum for bathtub forms of hazard functions and is usually of great interest in medical or industrial applications. For lifetime distributions where this change-point of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can also be obtained. Considering the exponentiated Weibull distribution for the lifetime data, we have different forms for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms. This model gives great flexibility of fit, but we do not have analytic expressions for the change-point of the hazard function. In this way, we consider the use of Markov Chain Monte Carlo methods to get posterior summaries for the change-point of the hazard function considering the exponentiated Weibull distribution.
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.