994 resultados para virtualizzazione umview viewos reti wireless mobilità livello transport
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
Questo documento di tesi si incentra principalmente sullo studio delle reti wireless mobili e dei relativi scenari di utilizzo. In particolare, come esse vengono applicate per il riconoscimento e la prevenzione di incidenti stradali. Vista l’importanza di questo problema a livello di sicurezza stradale, ho deciso di sviluppare un' applicazione per smartphone Android, in grado di riconoscere le attività di uso quotidiano dell’utente e associarle a dei comportamenti, come ad esempio quello di un ciclista, di un pedone o di un automobilista. Nel caso in cui, in uno scenario stradale i dispositivi si trovassero ad una distanza ravvicinata, possono comunicare tramite una connessione Wi-Fi Direct il loro ruolo e lanciare messaggi di pericolo per avvisare la loro presenza, in modo da prevenire collisioni stradali. La realtà in cui si vuole collocare questa applicazione è quella che viene chiamata Pedestrian Detection, già idea di General Motors, che la sta sviluppando sui futuri veicoli che metterà in produzione nei prossimi anni e che sicuramente integreranno funzionalità aggiuntive per la segnalazione di pericoli tramite smartphone e Wi-Fi Direct.
Resumo:
Cette thèse fait la lumière sur les différentes manières dont, historiquement, a été perçu, conçu et vécu le territoire, à travers l’expérience et l’essor de la mobilité. Cette étude montre le rôle crucial de l’automobilité dans le développement touristique du Québec et de l’Ontario et les manières dont elle a façonné certains de leurs territoires. La thèse reconstitue ces processus en examinant les différentes mesures adoptées pour mettre en tourisme ces territoires et les transformer sur le plan matériel comme symbolique, entre 1920 et 1967. Elle répond à la question suivante : en quoi et comment la mobilité associée à l’automobile transforme et crée les territoires touristiques? La période étudiée s’ouvre au moment où débute l’intervention gouvernementale en matière de tourisme et s’amorce l’aménagement d’infrastructures favorisant une plus grande automobilité. Elle se clôt sur les célébrations entourant le Centenaire du Canada et la tenue de l’Expo 1967 à Montréal, qui donnent lieu à un aménagement intense du territoire afin d’accommoder un nombre sans précédent de touristes motorisés en provenance des autres provinces canadiennes et des États-Unis. La thèse reconstitue d’abord le processus de mise en tourisme des territoires par la conception, la construction et la promotion du système routier, l’élaboration d’itinéraires et de circuits touristiques et le développement d’outils accompagnant le touriste dans sa mobilité. L’embellissement en tant qu’élément structurant de la transformation des territoires est ensuite examiné. Enfin, la publicité, les récits et les pratiques touristiques sont étudiés de manière détaillée afin d’identifier les mécanismes par lesquels se construisent les représentations des territoires par l’apport de différents acteurs. Cette thèse révèle ainsi les liens étroits et complexes qui se développent à partir des années 1920 entre l’automobilité, le tourisme et la modification des territoires. Elle contribue à mettre au jour l’historicité de certains réflexes et orientations qui ont encore cours dans l’industrie touristique canadienne soit ceux d’aborder son développement en fonction de l’accessibilité du territoire à l’automobile et du regard à travers le pare-brise. En montrant le rôle du système automobile dans l’expérience touristique, l’étude ajoute un élément nouveau à la compréhension de la démocratisation des loisirs. Souvent expliquée par la hausse du niveau de vie, du temps libre et de la généralisation des congés payés, cette démocratisation se trouve aussi favorisée par l’accessibilité à l’automobile qui, à son tour, rend accessible des territoires de plus en plus éloignés à des fins de loisirs. La dimension récréative de l’automobile permet d’expliquer son adoption rapide par les Nord-Américains et les Canadiens ainsi que la dépendance qu’ils ont progressivement développée à son égard.
Resumo:
I sistemi mobili rappresentano una classe di sistemi distribuiti caratterizzata dalla presenza di dispositivi portatili eterogenei quali PDA, laptop e telefoni cellulari che interagiscono tra loro mediante una rete di interconnessione wireless. Una classe di sistemi mobili di particolare interesse è costituita dai sistemi basati sul modello di interazione publish/subscribe. Secondo tale schema, i nodi all'interno di una rete possono assumere due ruoli differenti: i produttori di informazione, chiamati publisher, ed i consumatori di informazione, chiamati subscriber. Tipicamente, l'interazione tra essi è mediata da un gestore di eventi che indirizza correttamente le informazioni ricevute dai publisher verso i subscriber interessati, sulla base degli interessi espressi da questi ultimi tramite sottoscrizioni. Nella progettazione di sistemi mobili, a differenza di quelli tradizionali basati su nodi fissi, bisogna tenere conto di problemi quali la scarsa capacità computazionale dei dispositivi e la limitata larghezza di banda delle reti wireless. All'interno di tale ambito, stanno recentemente assumendo sempre maggiore importanza i sistemi context-aware, ovvero sistemi mobili che sfruttano i dati provenienti dall'ambiente circostante e dai dispositivi stessi per adattare il proprio comportamento e notificare agli utenti la presenza di informazioni potenzialmente utili. Nello studio di questi sistemi, si è notato che i nodi che si trovano nella stessa area geografica generano tipicamente delle sottoscrizioni che presentano tra loro un certo grado di similarità e coperture parziali o totali. Il gruppo di ricerca del DEIS dell’Università di Bologna ha sviluppato un'infrastruttura di supporto per sistemi mobili context-aware, chiamata SALES. Attualmente il sistema progettato non considera le similarità delle sottoscrizioni e quindi non sfrutta opportunamente tale informazione. In questo contesto si rende necessario l'adozione di opportune tecniche di aggregazione delle sottoscrizioni atte ad alleggerire la computazione dei nodi mobili e le comunicazioni tra loro. Il lavoro presentato in questa tesi sarà finalizzato alla ricerca, all'adattamento ed all'implementazione di una tecnica di aggregazione delle sottoscrizioni. Tale tecnica avrà lo scopo di rilevare e sfruttare le similarità delle sottoscrizioni ricevute dal sistema al fine di ridurne il numero; in questo modo, quando un nodo riceverà un dato, il processo di confronto tra l'insieme delle sottoscrizioni memorizzate e il dato ricevuto sarà più leggero, consentendo un risparmio di risorse computazionali. Inoltre, adattando tali tecniche, sarà possibile modulare anche il traffico dati scaturito dalle risposte alle sottoscrizioni. La struttura di questa tesi prevede un primo capitolo sui sistemi context-aware, descrivendone le principali caratteristiche e mettendo in luce le problematiche ad essi associate. Il secondo capitolo illustra il modello di comunicazione Publish/Subscribe, modello di riferimento per i moderni sistemi context-aware e per i sistemi mobili in generale. Il terzo capitolo descrive l'infrastruttura SALES sulla quale si è progettata, implementata e testata la soluzione proposta in questa tesi. Il quarto capitolo presenta le principali tecniche di aggregazione delle sottoscrizioni e spiega come possono essere adattate al contesto di questa tesi. Il quinto capitolo effettua l'analisi dei requisiti per comprendere meglio il comportamento della soluzione; seguono la progettazione e l’implementazione della soluzione su SALES. Infine, il sesto capitolo riporta in dettaglio i risultati ottenuti da alcuni degli esperimenti effettuati e vengono messi a confronto con quelli rilevati dal sistema di partenza.
Resumo:
Panoramica di MPEG-DASH e TVWS, descrizione dell'implementazione di un middleware multi-interfaccia per lo streaming video adattivo e test di valutazione del lavoro svolto
Resumo:
Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.
Resumo:
A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.
Resumo:
Deploying networked control systems (NCSs) over wireless networks is becoming more and more popular. However, the widely-used transport layer protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), are not designed for real-time applications. Therefore, they may not be suitable for many NCS application scenarios because of their limitations on reliability and/or delay performance, which real-control systems concern. Considering a typical type of NCSs with periodic and sporadic real-time traffic, this paper proposes a highly reliable transport layer protocol featuring a packet loss-sensitive retransmission mechanism and a prioritized transmission mechanism. The packet loss-sensitive retransmission mechanism is designed to improve the reliability of all traffic flows. And the prioritized transmission mechanism offers differentiated services for periodic and sporadic flows. Simulation results show that the proposed protocol has better reliability than UDP and improved delay performance than TCP over wireless networks, particularly when channel errors and congestions occur.
Resumo:
Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packet losses. However, the nature of the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS. Due to the lack of support for prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. To address these problems, a new transport layer protocol called Reliable Real-Time Transport Protocol (RRTTP) is proposed in this thesis. As a UDP-based protocol, RRTTP inherits UDP’s simplicity and fast transmission features. To improve the reliability, a retransmission and an acknowledgement mechanism are designed in RRTTP to compensate for packet losses. They are able to avoid unnecessary retransmission of the out-of-date packets in NCSs, and collisions are unlikely to happen, and small transmission delay can be achieved. Moreover, a prioritized transmission mechanism is also designed in RRTTP to improve the real-time performance of NCS networks under congested traffic conditions. Furthermore, the proposed RRTTP is implemented in the Network Simulator 2 for comprehensive simulations. The simulation results demonstrate that RRTTP outperforms TCP and UDP in terms of real-time transmissions in an NCS over wireless networks.
Resumo:
There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.
Resumo:
We consider a scenario where the communication nodes in a sensor network have limited energy, and the objective is to maximize the aggregate bits transported from sources to respective destinations before network partition due to node deaths. This performance metric is novel, and captures the useful information that a network can provide over its lifetime. The optimization problem that results from our approach is nonlinear; however, we show that it can be converted to a Multicommodity Flow (MCF) problem that yields the optimal value of the metric. Subsequently, we compare the performance of a practical routing strategy, based on Node Disjoint Paths (NDPs), with the ideal corresponding to the MCF formulation. Our results indicate that the performance of NDP-based routing is within 7.5% of the optimal.
Resumo:
We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.
Resumo:
Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.
Resumo:
In this paper, we propose a Loss Tolerant Reliable (LTR) data transport mechanism for dynamic Event Sensing (LTRES) in WSNs. In LTRES, a reliable event sensing requirement at the transport layer is dynamically determined by the sink. A distributed source rate adaptation mechanism is designed, incorporating a loss rate based lightweight congestion control mechanism, to regulate the data traffic injected into the network so that the reliability requirement can be satisfied. An equation based fair rate control algorithm is used to improve the fairness among the LTRES flows sharing the congestion path. The performance evaluations show that LTRES can provide LTR data transport service for multiple events with short convergence time, low lost rate and high overall bandwidth utilization.