1000 resultados para virtual microscopy
Resumo:
Dental roots that have been exposed to the oral cavity and periodontal pocket environment present superficial changes, which can prevent connective tissue reattachment. Demineralizing agents have been used as an adjunct to the periodontal treatment aiming at restoring the biocompatibility of roots. OBJECTIVE: This study compared four commonly used demineralizing agents for their capacity of removing smear layer and opening dentin tubules. METHODS: Fifty fragments of human dental roots previously exposed to periodontal disease were scaled and randomly divided into the following groups of treatment: 1) CA: demineralization with citric acid for 3 min; 2) TC-HCl: demineralization with tetracycline-HCl for 3 min; 3) EDTA: demineralization with EDTA for 3 min; 4) PA: demineralization with 37% phosphoric acid for 3 min; 5) Control: rubbing of saline solution for 3 min. Scanning electron microscopy was used to check for the presence of residual smear layer and for measuring the number and area of exposed dentin tubules. RESULTS: Smear layer was present in 100% of the specimens from the groups PA and control; in 80% from EDTA group; in 33.3% from TC-HCl group and 0% from CA group. The mean numbers of exposed dentin tubules in a standardized area were: TC-HCl=43.8±25.2; CA=39.3±37; PA=12.1±16.3; EDTA=4.4±7.5 and Control=2.3±5.7. The comparison showed significant differences between the following pairs of groups: TC-HCl and Control; TC-HCl and EDTA; CA and Control; and CA and EDTA. The mean percentages of area occupied by exposed dentin tubules were: CA=0.12±0.17%; TC-HCl=0.08±0.06%; PA=0.03±0.05%; EDTA=0.01±0.01% and Control=0±0%. The CA group differed significantly from the others except for the TC-HCl group. CONCLUSION: There was a decreasing ability for smear layer removal and dentin tubule widening as follows: AC>TC-HCl>PA>EDTA. This information can be of value as an extra parameter for choosing one of them for root conditioning.
Resumo:
The aim of this study was to examine the endothelial surface morphology and perform a morphometric analysis of the corneal endothelial cells of ostrich (Struthio camelus) using scanning electron microscopy. Polygonality, mean cell area, cell density and coefficient of variation of mean cell area were analyzed. The normal corneal endothelium consisted of polygonal cells of uniform size and shape with few interdigitations of the cell borders. Microvilli appeared as protusions on the cellular surface. The average cell area was 269±18µm² and the endothelial cell density was 3717±240cells mm-2. The coefficient of variation of the cell area was 0.06, and the percentage of hexagonal cells was 75%. The parameters evaluated did not differ significantly between the right and the left eye from the same ostrich. The results of this study showed that the ostrich corneal endothelial cells appear quite similar to those of the other vertebrates.
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
Background and Purpose: Several different methods of teaching laparoscopic skills have been advocated, with virtual reality surgical simulation (VRSS) being the most popular. Its effectiveness in improving surgical performance is not a consensus yet, however. The purpose of this study was to determine whether practicing surgical skills in a virtual reality simulator results in improved surgical performance. Materials and Methods: Fifteen medical students recruited for the study were divided into three groups. Group I (control) did not receive any VRSS training. For 10 weeks, group II trained basic laparoscopic skills (camera handling, cutting skill, peg transfer skill, and clipping skill) in a VRSS laparoscopic skills simulator. Group III practiced the same skills and, in addition, performed a simulated cholecystectomy. All students then performed a cholecystectomy in a swine model. Their performance was reviewed by two experienced surgeons. The following parameters were evaluated: Gallbladder pedicle dissection time, clipping time, time for cutting the pedicle, gallbladder removal time, total procedure time, and blood loss. Results: With practice, there was improvement in most of the evaluated parameters by each of the individuals. There were no statistical differences in any of evaluated parameters between those who did and did not undergo VRSS training, however. Conclusion: VRSS training is assumed to be an effective tool for learning and practicing laparoscopic skills. In this study, we could not demonstrate that VRSS training resulted in improved surgical performance. It may be useful, however, in familiarizing surgeons with laparoscopic surgery. More effective methods of teaching laparoscopic skills should be evaluated to help in improving surgical performance.
Resumo:
The objective of this study was to characterize acrosomal ultrastructure following discontinuous Percoll gradient centrifugation of cryopreserved bovine sperm. Semen was collected from six bulls of different breeds and three ejaculates per bull were evaluated. Frozen semen samples were thawed and the acrosomal region of sperm cells was evaluated by transmission electron microscopy (TEM) before (n = 18) and after (n = 18) Percoll centrifugation. The evaluation of 20 sperm heads from each of the 36 samples analyzed ensured that a large number of cells were investigated. The data were subjected to analysis of variance at a level of significance of 5%. Percoll centrifugation reduced the percentage of sperm exhibiting normal acrosomes (from 61.77 to 30.24%), reduced the percentage of sperm presenting atypical acrosome reactions (from 28.38 to 4.84%) and increased the percentage of sperm exhibiting damage in the acrosome (from 6.14 to 64.26%). The percentage of sperm with typical acrosome reactions was not significantly different before (3.70%) and after (0.67%) centrifugation. TEM distinguished four different types of acrosomal status and enabled ultrastructural characterization of acrosomal injuries. The percentage of sperm exhibiting normal acrosomes decreased and damage in the acrosome was the most frequent acrosomal injury with the Percoll gradient centrifugation protocol utilized.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A polymer precursor method has been used to synthesize Ni-doped SnO(2) nanoparticles. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. In this concentration range, the particle sizes decrease with increasing Ni content and a bulk solid solution limit was determined at similar to 1 mol%. Ni surface enrichment is present at concentrations higher than the solution limit. Only above 10 mol% Ni. the formation of a second NiO-related phase has been determined. Magnetization measurements suggest the occurrence of ferromagnetism for samples in the solid solution regime (below similar to 1 mol%). This ferromagnetism is associated with the exchange interaction between electron spins trapped on oxygen vacancies, and is enhanced as the amount of Ni(2+) substituting at Sn(4+) sites increases. Above the solid solution limit, ferromagnetism is destroyed by the Ni surface enrichment and the system behaves as a paramagnet. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as a structural material by suitable oxide dispersion strengthened ferritic martensitic steels would allow a substantial increase of the operating temperature from similar to 823 to about 923 K. Due to this reason the RAFM-alloy ODS-Eurofer has already been developed and produced with industrial partners. In the He-cooled modular divertor concept, where temperatures above 923 K will arise, an ODS-steel with a purely ferritic matrix is advantageous, because of missing phase transitions. Due to this reason, a special ferritic ODS-steel is being manufactured as well. In this work the microstructures of these two ODS-alloy types, analysed mainly by high resolution TEM are compared, with respect to different manufacturing processes. In addition first results of high resolution EBSD scans together with determined orientation maps of the RAFM steel ODS-Eurofer will also be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Aims: We aimed to evaluate if the co-localisation of calcium and necrosis in intravascular ultrasound virtual histology (IVUS-VH) is due to artefact, and whether this effect can be mathematically estimated. Methods and results: We hypothesised that, in case calcium induces an artefactual coding of necrosis, any addition in calcium content would generate an artificial increment in the necrotic tissue. Stent struts were used to simulate the ""added calcium"". The change in the amount and in the spatial localisation of necrotic tissue was evaluated before and after stenting (n=17 coronary lesions) by means of a especially developed imaging software. The area of ""calcium"" increased from a median of 0.04 mm(2) at baseline to 0.76 mm(2) after stenting (p<0.01). In parallel the median necrotic content increased from 0.19 mm(2) to 0.59 mm(2) (p<0.01). The ""added"" calcium strongly predicted a proportional increase in necrosis-coded tissue in the areas surrounding the calcium-like spots (model R(2)=0.70; p<0.001). Conclusions: Artificial addition of calcium-like elements to the atherosclerotic plaque led to an increase in necrotic tissue in virtual histology that is probably artefactual. The overestimation of necrotic tissue by calcium strictly followed a linear pattern, indicating that it may be amenable to mathematical correction.
Resumo:
Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050 degrees C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.
Resumo:
The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.