949 resultados para vector addition systems


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The investigation of pathogen persistence in vector-borne diseases is important in different ecological and epidemiological contexts. In this thesis, I have developed deterministic and stochastic models to help investigating the pathogen persistence in host-vector systems by using efficient modelling paradigms. A general introduction with aims and objectives of the studies conducted in the thesis are provided in Chapter 1. The mathematical treatment of models used in the thesis is provided in Chapter 2 where the models are found locally asymptotically stable. The models used in the rest of the thesis are based on either the same or similar mathematical structure studied in this chapter. After that, there are three different experiments that are conducted in this thesis to study the pathogen persistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical Community Size (CCS) and find its relationship with the model parameters. In this study, the stochastic versions of two epidemiologically different host-vector models are used for estimating CCS. I note that the model parameters and their algebraic combination, in addition to the seroprevalence level of the host population, can be used to quantify CCS. The study undertaken in Chapter 4 is used to estimate pathogen persistence using both deterministic and stochastic versions of a model with seasonal birth rate of the vectors. Through stochastic simulations we investigate the pattern of epidemics after the introduction of an infectious individual at different times of the year. The results show that the disease dynamics are altered by the seasonal variation. The higher levels of pre-existing seroprevalence reduces the probability of invasion of dengue. In Chapter 5, I considered two alternate ways to represent the dynamics of a host-vector model. Both of the approximate models are investigated for the parameter regions where the approximation fails to hold. Moreover, three metrics are used to compare them with the Full model. In addition to the computational benefits, these approximations are used to investigate to what degree the inclusion of the vector population in the dynamics of the system is important. Finally, in Chapter 6, I present the summary of studies undertaken and possible extensions for the future work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of-action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and Ieucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino, acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work is concerned with dynamical systems in presence of symmetries and reversing symmetries. We describe a construction process of subspaces that are invariant by linear Gamma-reversible-equivariant mappings, where Gamma is the compact Lie group of all the symmetries and reversing symmetries of such systems. These subspaces are the sigma-isotypic components, first introduced by Lamb and Roberts in (1999) [10] and that correspond to the isotypic components for purely equivariant systems. In addition, by representation theory methods derived from the topological structure of the group Gamma, two algebraic formulae are established for the computation of the sigma-index of a closed subgroup of Gamma. The results obtained here are to be applied to general reversible-equivariant systems, but are of particular interest for the more subtle of the two possible cases, namely the non-self-dual case. Some examples are presented. (C) 2011 Elsevier BM. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.