978 resultados para user click behavior
Resumo:
As in any technology systems, analysis and design issues are among the fundamental challenges in persuasive technology. Currently, the Persuasive Systems Development (PSD) framework is considered to be the most comprehensive framework for designing and evaluation of persuasive systems. However, the framework is limited in terms of providing detailed information which can lead to selection of appropriate techniques depending on the variable nature of users or use over time. In light of this, we propose a model which is intended for analysing and implementing behavioural change in persuasive technology called the 3D-RAB model. The 3D-RAB model represents the three dimensional relationships between attitude towards behaviour, attitude towards change or maintaining a change, and current behaviour, and distinguishes variable levels in a user’s cognitive state. As such it provides a framework which could be used to select appropriate techniques for persuasive technology.
Resumo:
Companies have looked for many new ways to communicate with their customers. In the current scenario, Facebook has proven to be an efficient communication tool between consumers and businesses. This study aims to understand the differences in the complaint messages sent to companies, through an experiment that measured the emotional tone and the lack of formality in each message received by the website and the Facebook page of the company. As expected, people are more informal on Facebook. However, contrary to our intuition, participants tended to display more emotions on the company website. The social norms theory and the impression management contributed to explain the phenomena found.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
The ever-increasing number and severity of cybersecurity breaches makes it vital to understand the factors that make organizations vulnerable. Since humans are considered the weakest link in the cybersecurity chain of an organization, this study evaluates users’ individual differences (demographic factors, risk-taking preferences, decision-making styles and personality traits) to understand online security behavior. This thesis studies four different yet tightly related online security behaviors that influence organizational cybersecurity: device securement, password generation, proactive awareness and updating. A survey (N=369) of students, faculty and staff in a large mid-Atlantic U.S. public university identifies individual characteristics that relate to online security behavior and characterizes the higher-risk individuals that pose threats to the university’s cybersecurity. Based on these findings and insights from interviews with phishing victims, the study concludes with recommendations to help similat organizations increase end-user cybersecurity compliance and mitigate the risks caused by humans in the organizational cybersecurity chain.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
User-Web interactions have emerged as an important research in the field of information science. In this study, we examine extensively the Web searching performed by general users. Our goal is to investigate the effects of users’ cognitive styles on their Web search behavior in relation to two broad components: Information Searching and Information Processing Approaches. We use questionnaires, a measure of cognitive style, Web session logs and think-aloud as the data collection instruments. Our study findings show wholistic Web users tend to adopt a top-down approach to Web searching, where the users searched for a generic topic, and then reformulate their queries to search for specific information. They tend to prefer reading to process information. Analytic users tend to prefer a bottom-up approach to information searching and they process information by scanning search result pages.
Resumo:
Personalised social matching systems can be seen as recommender systems that recommend people to others in the social networks. However, with the rapid growth of users in social networks and the information that a social matching system requires about the users, recommender system techniques have become insufficiently adept at matching users in social networks. This paper presents a hybrid social matching system that takes advantage of both collaborative and content-based concepts of recommendation. The clustering technique is used to reduce the number of users that the matching system needs to consider and to overcome other problems from which social matching systems suffer, such as cold start problem due to the absence of implicit information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased, using both user information (explicit data) and user behavior (implicit data).
Resumo:
Dhaka, the capital of Bangladesh, is facing severe traffic congestion. Owing to the flaws in past land use and transport planning decisions, uncontrolled population growth and urbanization, Dhaka’s traffic condition is worsening. Road space is widely regarded in the literature as a utility, so a common view of transport economists is that its usage ought to be charged. Road pricing policy has proven to be effective in managing travel demand, in order to reduce traffic congestion from road networks in a number of cities including London, Stockholm and Singapore. Road pricing as an economic mechanism to manage travel demand can be more effective and user-friendly when revenue is hypothecated into supply alternatives such as improvements to the transit system. This research investigates the feasibility of adopting road pricing in Dhaka with respect to a significant Bus Rapid Transit (BRT) project. Because both are very new concepts for the population of Dhaka, public acceptability would be a principal issue driving their success or failure. This paper explores the travel behaviour of workers in Dhaka and public perception toward Road Pricing with regards to work trips- based on worker’s travel behaviour. A revealed preference and stated preference survey has been conducted on sample of workers in Dhaka. They were asked limited demographic questions, their current travel behaviour and at the end they had been given several hypothetical choices of integrated BRT and road pricing to choose from. Key finding from the survey is the objective of integrated road pricing; subsidies Bus rapid Transit by road pricing to get reduced BRT fare; cannot be achieved in Dhaka. This is because most of the respondent stated that they would choose the cheapest option Walk-BRT-Walk, even though this would be more time consuming and uncomfortable as they have to walk from home to BRT station and also from BRT station to home. Proper economic analysis has to be carried out to find out the appropriate fare of BRT and road charge with some incentive for the low income people.
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Background: General practitioners (GPs) and nurses are ideally placed to address the significant unmet demand for the treatment of cannabis-related problems given the numbers of people who regularly seek their care. The aim of this study was to evaluate differences between GPs and nurses’ perceived knowledge, beliefs, and behaviors toward cannabis use and its screening and management. Methods: This study involved 161 nurses and 503 GPs who completed a survey distributed via conference satchels to delegates of Healthed seminars focused on topics relevant to women and children’s health. Differences between GPs and nurses were analyzed using χ2- tests and two-sample t-tests, while logistic regression examined predictors of service provision. Results: GPs were more likely than nurses to have engaged in cannabis-related service provision, but also more frequently reported barriers related to time, interest, and having more important issues to address. Nurses reported less knowledge, skills, and role legitimacy. Perceived screening skills predicted screening and referral to alcohol and other drug (AOD) services, while knowing a regular user increased the likelihood of referrals only. Conclusions: Approaches to increase cannabis-related screening and intervention may be improved by involving nurses, and by leveraging the relationship between nurses and doctors, in primary care.
Resumo:
There are different ways to authenticate humans, which is an essential prerequisite for access control. The authentication process can be subdivided into three categories that rely on something someone i) knows (e.g. password), and/or ii) has (e.g. smart card), and/or iii) is (biometric features). Besides classical attacks on password solutions and the risk that identity-related objects can be stolen, traditional biometric solutions have their own disadvantages such as the requirement of expensive devices, risk of stolen bio-templates etc. Moreover, existing approaches provide the authentication process usually performed only once initially. Non-intrusive and continuous monitoring of user activities emerges as promising solution in hardening authentication process: iii-2) how so. behaves. In recent years various keystroke dynamic behavior-based approaches were published that are able to authenticate humans based on their typing behavior. The majority focuses on so-called static text approaches, where users are requested to type a previously defined text. Relatively few techniques are based on free text approaches that allow a transparent monitoring of user activities and provide continuous verification. Unfortunately only few solutions are deployable in application environments under realistic conditions. Unsolved problems are for instance scalability problems, high response times and error rates. The aim of this work is the development of behavioral-based verification solutions. Our main requirement is to deploy these solutions under realistic conditions within existing environments in order to enable a transparent and free text based continuous verification of active users with low error rates and response times.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
Previous studies have shown that users’ cognitive styles play an important role during Web searching. However, only limited studies have showed the relationship between cognitive styles and Web search behavior. Most importantly, it is not clear which components of Web search behavior are influenced by cognitive styles. This paper examines the relationships between users’ cognitive styles and their Web searching and develops a model that portrays the relationship. The study uses qualitative and quantitative analyses to inform the study results based on data gathered from 50 participants. A questionnaire was utilised to collect participants’ demographic information, and Riding’s (1991) Cognitive Style Analysis (CSA) test to assess their cognitive styles. Results show that users’ cognitive styles influenced their information searching strategies, query reformulation behaviour, Web navigational styles and information processing approaches. The user model developed in this study depicts the fundamental relationships between users’ Web search behavior and their cognitive styles. Modeling Web search behavior with a greater understanding of user’s cognitive styles can help information science researchers and information systems designers to bridge the semantic gap between the user and the systems. Implications of the research for theory and practice, and future work are discussed.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
Recently a convex hull based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. In this paper we show two efficient probabilistic attacks on this protocol which reveal the user’s secret after the observation of only a handful of authentication sessions. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values which cross the threshold of usability.