982 resultados para typical steppe


Relevância:

60.00% 60.00%

Publicador:

Resumo:

由于人为因素导致的全球范围内的第六次物种大灭绝已经成为不争的事实,但人类还不清楚这种现象对生态系统功能的影响。在回答生物多样性与生态系统功能关系的问题上,补偿作用是一个争论的热点。为了阐明生物多样性对生态系统功能的影响,于2005年夏开始,在内蒙古温带典型草原开展了一个研究生物多样性与生态系统功能的物种去除试验。本研究是该项目的一部分。 元素循环是生态系统的重要功能之一,而氮素是限制草地生态系统生产力的主要因素,氮矿化是氮循环的关键步骤,因此,本研究重点讨论植物功能群对土壤氮矿化作用的影响,提出3点假设:1. 不同植物功能群对土壤氮矿化速率影响不同;2. 植物功能群去除前后氮矿化速率不同;3.植物功能群之间存在补偿效应。为了证明这些假设,于2006年9月、2007年6月和2007年8月份分别进行了室内培养(温度25℃,湿度60%田间最大持水量)用于测量氮矿化速率,同时于2007年6月和2007年8月份进行野外培养用于测量野外条件下的氮矿化速率,并在去除处理2年后得到以下主要结果: 1. 植物功能群去除数与土壤氮矿化速率呈单峰曲线关系(P<0.05),去除少量植物功能群氮矿化速率上升,去除更多的植物功能群后氮矿化速率下降; 2. 植物功能群去除数与土壤硝态氮含量呈线性正相关关系(P<0.0001),植物功能群的丧失加剧了土壤NO3--N的流失; 3. 多年生非禾草(PF)比其他植物功能群显著降低了氮矿化速率(P<0.05); 4. 短期内(去除处理1年内)在凋落物回填的情况下,去除0个植物功能群与去除全部植物功能群的氮矿化速率无显著差异(P>0.05); 5. 内蒙古温带典型草原在近3年内(2005、2006、2007)土壤碳库、氮库变化较小。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

自然界中资源的异质性是普遍存在的,既有自然因素导致的,也有人类干扰导致的。在内蒙古草原,植物经常处在地上部异质性的干扰生境和地下异质性的养分生境中。植物的生物量生产反映了植物对不同生境的适应能力,而资源的分配策略是链接进化生态学和功能生态学的纽带。在变化的生境中植物可以通过改变资源分配的格局而适应环境的变化,获得较高的生物产量。但是,关于草原植物在生物量生产和资源分配上如何对异质性的生境做出响应迄今研究尚少。为此在中国科学院内蒙古草原生态系统定位研究站的长期围封样地(1983年围封),设计了氮素添加和刈割处理的小区实验,使植物处于不同的养分和干扰生境中。我们选择羊草(Leymus chinensis ,根茎禾草,群落优势种)、大针茅(Stipa grandis ,丛生禾草,群落优势种)、糙隐子草(Cleistogenes squarrosa , C4 植物,群落常见伴生种)、木地肤(Kochia prostrate ,藜科半灌木,群落常见伴生种)、猪毛菜(Salsola collina,藜科一年生植物,群落常见伴生种)为对象对这一问题进行了研究。同时,以1979 年围封的羊草样地为对照,选择了比邻的刈割草场,就草原植物对长期刈割干扰的响应策略进行了研究。结果显示: 1. 氮素添加使植物群落生物量显著提高,而且高氮生境下群落生物量增加的幅度最大。从季节动态看,植物群落生物量对氮素添加的响应存在滞后现象,在植物进入快速生长期后,氮素添加的效应日趋明显。 2. 不同植物种群对氮素添加的响应不同,按照植物种群生物量的变化可以分为三种类型:极其敏感型 、敏感型和不敏感型。极其敏感型代表植物是羊草,氮素添加后其种群生物量显著增加。敏感型代表植物是糙隐子草和猪毛菜,前者种群生物量在中氮生境下显著增加,后者种群生物量在低氮生境下显著增加。不敏感型代表植物是大针茅和木地肤,氮素添加后,二者的种群生物量均无显著变化。 3.从生物量向地上和地下器官的分配来看,添加氮素后,一年生植物猪毛菜向地上器官分配的生物量的比例均显著增加;多年生草本植物羊草、大针茅和糙隐子草向地上器官分配的比例均没有发生变化;多年生灌木木地肤在中氮生境下向地上器官的分配比例增加。从生殖分配来看,多年生的C3植物羊草和大针茅和一年生的C4植物猪毛菜的生殖分配格局相对稳定,均未因氮素的添加而发生显著改变。多年生C4植物糙隐子草和木地肤在低氮生境中生殖分配比例显著增加。 4. 不同时间刈割对草原群落生物量影响不同。在牧草快速生长期刈割,群落生物量显著降低,当季能恢复,但影响翌年群落水平的生物量生产;而在牧草生物量最大期刈割,当季难恢复,但对第二年的植物的生长影响较小。 5. 刈割对不同植物的影响存在显著差异:C4植物<C3植物,一年生植物<多年生植物,牧草快速生长期刈割<牧草生物量最大期刈割。 6. 面对不同时间的刈割干扰,草原植物的响应不同。在生物量向地上器官和地下器官分配方面:C3植物大针茅、羊草面对刈割干扰生物量分配分配格局相对稳定,变异较小;而C4植物的资源分配对刈割干扰响应敏感,因不同刈割时间其生物量分配格局不同。在生物量生殖分配方面:多年生植物(如羊草、大针茅、糙隐子草、木地肤)资源分配格局相对稳定,面对刈割干扰其生物量生殖分配格局无显著变化,而一年生植物猪毛菜对刈割干扰敏感,因刈割时间不同其生殖分配格局将随之发生变化。 7.长期刈割干扰下大针茅的种群生物量维持不变;而糙隐子草的种群生物量表现为显著增长的趋势。由于大针茅的株丛生物量显著降低,糙隐子草无显著变化,长期刈割干扰下两种植物种群生物量的维持或增加都是因为密度的显著提高。因此,密度调节是两种植物实现种群调节的重要机制。 8. 长期刈割干扰下大针茅的丛面积和单株分蘖数均无显著变化,表明大针茅非生殖株丛密度的增加不是以降低单个非生殖株丛的大小为代价的,而是通过减少生殖株丛的密度来实现的。而糙隐子草丛面积降低,但是单株分蘖数无显著变化,说明糙隐子草密度增加的过程中,单个株丛占据的营养面积减少了,但株丛的生长状况没有受到显著影响。 9.面对长期刈割干扰,两种植物对无性繁殖和有性繁殖过程采取了截然相反的调整策略。大针茅显著提高了非生殖株丛的密度和相对密度,显著降低了生殖株丛的相对密度,而且降低了对有性生殖过程的生物量分配的比例。糙隐子草显著增加了生殖株丛的密度和相对密度,而且增加了对有性生殖过程的生物量分配的比例。面对刈割干扰两个植物种在繁殖策略上的逆向调节,可能是它们在刈割干扰梯度上能够相互取代的重要原因。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

我国北方温带草原是欧亚大陆草原生物群区的重要组成部分,对于区域和全球的碳循环和平衡起着重要的作用。频繁的自然或人为干扰能够改变草原生态系统的群落结构和生态系统功能,从而影响生态系统为人类提供的产品和服务。本研究选取位于内蒙古多伦县的半干旱温带草原,研究火烧、氮素添加和地形以及它们的综合作用对该地区植物生产力、植物多样性、盖度和土壤呼吸的影响;另外,我们比较研究了由于地形因素而存在于草原地区的林地群落与其邻近草地的碳氮库和循环;旨在探讨我国北方温带草原地区人为干扰对草原生态系统结构与功能的影响以及该地区林地和草地碳氮库和循环的差异机理,以期为模型模拟本地区的生态系统碳循环提供理论依据和数据支持,具体研究结果如下: 1. 2006–2008 年,通过研究植物多样性和盖度对地形、火烧和氮素添加及其交互作用的响应,结果表明:半干旱草原植物物种数、香农威纳指数、均一性指数和盖度均表现出显著的年际变化。坡下的物种数、香农威纳指数和均一性指数均低于坡上。坡下较高的羊草(Leymus chinensis)、冰草(Artemisia frigida)、唐松草(Thalictrum petaloideum)和冷蒿(Agropyron cristatum)的盖度导致坡下的群落总盖度、禾本科草和非禾本科草盖度分别比坡上高22.5%、9.6%和13.2%。春季火烧提高了物种数、香农威纳指数和均一性指数。火烧对群落总盖度影响较小是由于火烧后非禾本科草冷蒿盖度的降低抵消了禾本科草羊草、冰草和针茅(Stipa kryroii)盖度的增加。施氮肥后物种数、香农威纳指数和均一性指数均降低。禾本科草羊草、冰草和针茅以及非禾本科草唐松草盖度的增加导致施肥后群落总盖度、禾本科草和非禾本科草的盖度分别增加了23.6%、35.1%和21.2%。火烧对禾本科草和非禾本科草盖度的作用受地形和氮素添加的影响。地形、火烧和氮素添加对植物盖度的影响主要受土壤水分调控。 2. 2005–2008 年,通过研究净初级生产力(NPP)对火烧、氮素添加和地形及其交互作用的响应,结果表明:半干旱草原的NPP 具有显著的年际变化。火烧后地上净初级生产力(ANPP)、地下净初级生产力(BNPP)和BNPP/ANPP 分别增加了12.8%、22.2%和14.9%。ANPP 的提高是由于火烧后禾本科植物(主要是羊草、冰草和针茅)生物量的增加。与之相反,火烧降低了非禾本科草,特别是冷蒿的生物量。氮素添加提高了ANPP (54.8%) ,对BNPP 没有影响,导致施氮肥后BNPP/ANPP 显著降低(33.4%)。禾本科草羊草、冰草和针茅以及非禾本科草唐松草生物量的增加,是氮素添加提高ANPP 的主要原因。坡下的ANPP 和BNPP 分别比坡上高14.1%和8.2%,但地形对BNPP/ANPP 没有影响。坡下ANPP 的提高主要是由于坡下禾本科草羊草、冰草以及非禾本科草唐松草、冷蒿的生物量高于坡上。氮素添加和地形影响ANPP 和BNPP/ANPP 对火烧的响应。火烧、氮素添加和地形对NPP 和植物碳分配39%–75%的综合效应可由这三个因素的简单加和效应来解释。 3. 通过研究2005 和2006 年生长季内土壤呼吸对地形、火烧和氮素添加的响应,结果表明:坡下的季节平均土壤呼吸比坡上高6.0%。春季火烧在整个生长季内促进土壤呼吸,平均增幅达23.8%。另外,火烧对土壤呼吸的效应受到季节和地形的影响。施用氮肥增加了11.4% 的土壤呼吸。火烧和地形对土壤呼吸的影响主要受土壤水分和植物生长的调控;而施氮肥后土壤呼吸的增加,主要是由于氮素添加促进植物生长后根系活性和呼吸的提高。 4. 2006–2007 年,通过对林地群落及其邻近草原生态系统土壤温度、土壤水分、土壤机械组成、地上和地下生物量、凋落物现存量、土壤碳氮储量、土壤呼吸、氮矿化和土壤微生物生物量的比较研究,结果表明:林地的土壤温度比草地低5°C,而其土壤水分却比草地高3.1%(绝对差异)。尽管林地(11,928.1 g m–2)和草地(11,362.2 g m–2)的土壤碳储量差异不显著,由于林地较高的植物生产力导致其碳储量高于草地。与草地相比,林地具有较高的凋落物现存量及碳氮含量、土壤无机氮含量、矿化氮的累积量、微生物生物量碳、微生物生物量氮、土壤呼吸和微生物呼吸。草地和林地的氮矿化速率没有显著差异。由地形因素引起的水分差异对于调控林地和草地生态系统碳氮库和循环(土壤碳氮储量、BNPP、矿化氮的累积量)具有重要作用。林地与草地生态系统碳储量的差异影响了我国北方草原地区碳的评估。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

通过对宁南典型草原植被恢复过程次降雨土壤水分动态的研究,阐明植被恢复对次降雨后土壤水分的影响及机理。结果表明,次降雨提高了土壤含水率和贮水量,均表现出1 d>3 d>7 d。草地封育能够提高次降雨资源化效率,随封育时间延长,次降雨后0-60 cm土壤含水率和0-100 cm土壤贮水量不断提高。降雨对封育草地土壤水分的影响范围在100 cm土层内,100 cm以下不能得到降雨的补充。封育时间延长土壤水分活跃层加深,坡耕地仅为40 cm,封育17 a后达到60 cm。土壤持水能力越强,表层土壤饱和导水率越大,雨后1 d在0-100 cm土壤贮水量越大。地上生物量愈大,雨后1~7 d在0-200 cm土壤耗水量越大。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用样方法对云雾山干草原区本氏针茅草地群落进行长期定位监测,对未封育样地和封育5,10,15,20和25年样地群落的平均高度、盖度、多度和地上生物量以及植物多样性进行实地调查分析,以研究围栏封育对草地植物群落特征动态变化的影响。结果表明,围封10年样地群落的高度、多度以及地上生物量最大,而群落的盖度则随封育年限的增加呈显著增加趋势,在封育25年达到最大;围栏封育的不同年限也显著影响了群落的物种多样性,在围封10年样地群落具有最高的多样性指数,围封15年样地具有最高的丰富度指数,而均匀度指数则是在未封育群落中表现为最高值,最低值是在物种丰富度最高时出现。由此可见,围栏封育在一定时间范围内可以显著改善群落的特征,增加群落的生产力,对于本研究地本氏针茅群落的最佳封育期限为10~15年,但围封时间过长在草地退化方面有一定程度的影响。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

应用离心机法测定土壤水分特征,研究黄土高原典型草原带退耕地植被恢复演替过程中土壤持水性能的变化特点及趋势。结果表明:土壤含水量与土壤水吸力之间符合幂函数θ=aSb,参数a的变化随着植被的演替呈增加趋势;由于植被的影响,在同一吸力范围内的土壤含水量不同,植被为顶级长芒草(Stipabungeana)群落时,土壤在各吸力段的含水量最高,坡耕地最低;其它群落土壤含水量随着水吸力的增加变化趋于一致;退耕地植被在演替过程中通过提高土壤有机质含量改善结构,降低容重并增加毛管孔隙度,对土壤的储水和持水性能产生作用。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wind erosion is one of the major environmental problems in semi-arid and arid regions. Here we established the Tariat-Xilin Gol transect from northwest to southeast across the Mongolian Plateau, and selected seven sampling sites along the transect. We then estimated the soil wind erosion rates by using the Cs-137 tracing technique and examined their spatial dynamics. Our results showed that the Cs-137 inventories of sampling sites ranged from 265.63 +/- 44.91 to 1279.54 +/- 166.53 Bq.m(-2), and the wind erosion rates varied from 64.58 to 419.63 t.km(-2).a(-1) accordingly. In the Mongolia section of the transect (from Tariat to Sainshand), the wind erosion rate increased gradually with vegetation type and climatic regimes; the wind erosion process was controlled by physical factors such as annual precipitation and vegetation coverage, etc., and the impact of human activities was negligible. While in the China section of the transect (Inner Mongolia), the wind erosion rates of Xilin Hot and Zhengxiangbai Banner were thrice as much as those of Bayannur of Mongolia, although these three sites were all dominated by typical steppe. Besides the physical factors, higher population density and livestock carrying level should be responsible for the higher wind erosion rates in these two regions of Inner Mongolia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil net nitrogen mineralization (NNM) of four grasslands across the elevation and precipitation gradients was studied in situ in the upper 0-10 cm soil layer using the resin-core technique in Xilin River basin, Inner Mongolia, China during the growing season of 2006. The primary objectives were to examine variations of NNM among grassland types and the main influencing factors. These grasslands included Stipa baicalensis (SB), Aneulolepidum Chinense (AC), Stipa grandis (SG), and Stipa krylovii (SK) grassland. The results showed that the seasonal variation patterns of NNM were similar among the four grasslands, the rates of NNM and nitrification were highest from June to August, and lowest in September and October during the growing season. The rates of NNM and nitrification were affected significantly by the incubation time, and they were positively correlated with soil organic carbon content, total soil nitrogen (TN) content, soil temperature, and soil water content, but the rates of NNM and nitrification were negatively correlated with available N, and weakly correlated with soil pH and C:N ratio. The sequences of the daily mean rates of NNM and nitrification in the four grasslands during the growing season were AC > SG > SB > SK, and TN content maybe the main affecting factors which can be attributed to the land use type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, 172 mollusk assemblages from the Weinan loess section in the southeast of Loess Plateau, China, were identified quantitatively at relative high resolution. The results show: 1) the history and processes of paleoclimatic and paleoenvironmental changes in Weinan since the last 70 ka; 2) the characteristics of climatic changes during the period of the last glacial maximum (LGM); 3) the spatial pattern of paleoclimate variations at the south and middle parts of the Loess Plateau during the LGM period; 4) the timing of the last deglaciation and the return event of rapid climate change during the last deglaciation. The main conclusions are as follows: 1) 172 mollusk samples taken from the uppermost 9 m deposits cover the past 70 ka, which were sampled at the internals of 5 cm for S_0, 3 cm for L_(1-1) and L_(1-2), and 10 cm for L_(1-3), L_(1-4) and L_(1-5). Author analyzed quantitatively all individuals including broken pieces of snail shells, percentages of 15 species identified from 172 samples. Three main groups were determined according to the ecological requirement of each taxon. Based on the variations of three ecological groups and typical ecological species, The author intended to reconstruct the history of and processes of climate and environment since the last 70 ka in the Weinan region. The climate and environment in this region experienced the following changes: relative warm and humid stage from 67.5-20.3 cal. ka B.P., a period of forest-steppe or steppe developed; cold and arid stage from 20.3-15.5 cal. ka B.P., a dry steppe period, later wetter and colder; cold and humid period once time from 15.5 to 12.3 cal. ka B.P., a typical steppe or forest-steppe stage; cold and humid again from 12.3 cal. ka B.P. to 8.2 cal. ka B.P., a tropical steppe stage; warm and humid climate, a forest-steppe developed. 2) The climate during the period of the last glacial maximum (LGM) in Weinan was characterized by a general cold-humid condition, represented by occurrence of a number of the cool-humidiphilous mollusk species such as Gastocopta amigerella and Vallonia cf. pulchella in the section. 3) Comparison of the variations in abundance of Puncture orphana at Weinan with those at Luochuan and Changwu sections suggests that the summer monsoon intensity influenced differently at the three regions during the LGM period. The Weinan was weaker summer monsoon impact during all the period, the Luochuan was influenced occasionally, and Changwu was only a very short time affected, which indicated it might be located at the western margin of the summer monsoon influence during that period. 4) The ratio of thermo-humidiphilous mollusk group to cold-aridiphilous one shows an increase tendency at about 15 cal. ka B.P., reflecting the climate warming after the deglaciation in Weinan, which is approximately corresponding to the timing of warming period of the last deglaciation, found in the East Atlantic Ocean, the South China Sea and the Loess Plateau (indicated by the phytolith study). 5) A remarkable decrease in the number of thermo-humidiphilous and cool-humidiphilous mollusk species from 12.7 - 11.6 cal. ka B.P. indicates a cooling in climate and might be the reflection of the Younger Dryas event in Weinan. 6) Variations in the ratios of thermo-humidiphilous mollusk species to cold-aridiphilous ones reflect the climate instability in Holocene. There were four warm-humid periods (10-8.1 cal. ka B.P., 6.9-6.1 cal. ka B.P., 5.2-2.6cal. ka B.P., 1.6cal. ka B.P. to the present ) and three relative cold-arid periods (8.1-6.9 cal. ka B.P., 6.1-5.2 cal. ka B.P., 2.6-1.6 cal. ka B.P.), showing about a 1,000 year climatic oscillation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excrement patches of grazing animals play an important role in greenhouse gas (GHG) fluxes due to the high nitrogen (N) and available carbon (C) deposited in small areas, but little information is available for the effect of excrement in the Inner Mongolian grassland (43 26 degrees N, 116 degrees 40'E). To elucidate the effect of grazing sheep urine, fresh dung and compost on fluxes of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O), a short-term field study (65 days) was carried out in the typical grassland of Inner Mongolia with the optimised closed chamber/GC technique. Compared with the control, cumulative net CH4 consumption decreased 36, 31, and 18% from urine, fresh dung, and compost plots, respectively; net CO2-C output increased by 6.5, 1.5, and 1.2% from urine, fresh dung, and compost treated soil, respectively; about three times as much N2O-N was emitted from urine and the fresh dung treatments during 65 days. Nitrous oxide emission was positively correlated with CO, emission (R = 0.691, P < 0.01) and water-filled pore space (R = 0.698, P < 0.01). The percentages of N2O-N loss of applied-N were 0.44 and 1.05% for urine and fresh dung, respectively. Our results suggest that in autumn in the degraded grassland of Inner Mongolia, the effect of sheep excrement may be ignored when evaluating the total GHG emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.