274 resultados para triterpene lactone
Resumo:
The effect of three new derivatives from dehydrocrotonin (DHC-compound I) on gastric damage indifferent animal models including gastric ulceration induced by a necrotic agent and hypothermic restrained-stress was studied: compound 11 (produced by reducing the cyclohexenone moiety of DHC with NaBH4): compound III (produced by reducing the carbonyls with LiAlH4); and compound IV (produced by transforming the lactone moiety into an amide). Their structures were confirmed on the basis of chemical and physicochemical evidence. When previously administered (p.o.) at a dose of 100 mg/kg, compound II significantly (P < 0.01) reduced gastric injury induced by HCl/ethanol (78%) and indomethacin (88%) better than did reference compound 1 (48 and 43%, respectively). But the anti-ulcerogenic activity of compound II was completely abolished by the stress-induced ulcer. Reduction of carbonyls with LiAlH4 (compound 111) caused decreased activity, markedly when no protective effect in any of the models was applied (P > 0.05). However, compound IV, in which the lactone moiety was changed into an amide. when administered at the same dose (100 mg/kg, p.o.), was more effective. The presence of a lactone moiety or Michael acceptor is probably essential for the anti-ulcerogenic effect of these compounds. (C) 2003 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O ácido canárico 1 foi isolado das folhas de Rudgea jasminoides. A substância isolada é um derivado triterpênico do tipo seco-lupano e teve sua estrutura elucidada com base nos dados espectrais, principalmente em experimentos de RMN a 1D e 2D. O sitosterol, o estigmasterol e os ácidos ursólico e oleanólico também foram isolados.
Resumo:
The isolation of three new triterpene saponins 3beta-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-2-O-acetylara-binopyranosylolean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (2), 3beta-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-O-arabinopyranosylurs-12-en-28-oic acid (3), and 3beta-O-beta-D-glucopyranosyl-(1-->2)-beta-D-O-galactopyranosylurs-12-en-28-oic acid (4) together with five known saponins and one flavonoid glycoside from the aqueous infusion of flex amara (Vellozo) Loes. leaves is reported. All structures were elucidated by spectroscopic methods, including the concerted application of one-dimensional (H-1, TOCSY, C-13, and C-13 DEPT NMR) and two-dimensional NMR techniques (DQF-COSY, HSQC, and HMBC).
Resumo:
Helivypolide G was isolated from leaves of Helianthus annuus L. cv. Stella. In the course of our ongoing research for new allelochemicals from Helianthus annuus, a novel dimeric bioactive sesquiterpene lactone, helivypolide G has been isolated and characterized from the medium polar active fractions of the leaves of cultivar variety Stella. The monomers are connected through carbons C-15 of each unit and an oxygen bridge, forming an enolic oxane ring. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.
Resumo:
Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.
Resumo:
Hyperverzweigte Polymere erfuhren in den letzten Jahren immer mehr Beachtung, da sie im Vergleich zu ihren linearen Analoga besondere Eigenschaften besitzen. Im Jahre 2002 wurde die erste enzymkatalysierte Darstellung hyperverzweigter Poly(epsilon-caprolacton)e (hb-PCL) beschrieben. Hier ermöglichte das Konzept der konkurrierenden ringöffnenden Polymerisation und Polykondensation die Kontrolle der Eigenschaften des dargestellten Polymers. Detaillierte Untersuchungen in Hinblick auf Grenzen und Möglichkeiten, aber auch die Synthese im Technikumsmaßstab sind wesentliche Aspekte dieser Arbeit. Außerdem wird ein neues Konzept eingeführt, das Reknitting genannt wurde. Ziel desselben ist das Recycling kommerziellen, linearen PCLs mittels Umesterung zu hb-PCL durch Enzymkatalyse. Diese hb-PCLs zeigen vergleichbare Eigenschaften zu den aus den Comonomeren dargestellten. Ausgehend von hb-PCL sollte eine geeignete Route zu methacrylierten Vernetzerverbindungen entwickelt werden. Aus Mischungen derselben mit 2-Hydroxyethylmethacrylat wurden komplexe Netzwerkarchitekturen durch Copolymerisation erhalten. Diese Netzwerke wurden in Hinblick auf ihre mechanisch physikalischen Eigenschaften untersucht. Zuletzt wurden Screeningexperimente an anderen zyklischen Estern durchgeführt, da ein Transfer des oben vorgestellten Konzepts angestrebt wurde. Zwei neue hyperverzweigte Polymerklassen, hb-Poly(delta-valerolacton) und hb-Polytrimethylencarbonat wurden detaillierter untersucht und in Ihren Eigenschaften mit hb-PCL verglichen.
Resumo:
Pharmacological activation of cannabinoid CB(1) and CB(2) receptors is a therapeutic strategy to treat chronic and inflammatory pain. It was recently reported that a mixture of natural triterpenes α- and β-amyrin bound selectively to CB(1) receptors with a subnanomolar K(i) value (133 pM). Orally administered α/β-amyrin inhibited inflammatory and persistent neuropathic pain in mice through both CB(1) and CB(2) receptors. Here, we investigated effects of amyrins on the major components of the endocannabinoid system.
Resumo:
Epoxyisoprostanes EI (1) and EC (2) are effective inhibitors of the secretion of proinflammatory cytokines IL-6 and IL-12. In detailed studies toward the investigation of the molecular mode of action of these structures, a highly potent lactone (3) derived from 1 was identified. The known isoprostanoids 1 and 2 are most likely precursors of 3, the product of facile intramolecular reaction between the epoxide with the carboxylic acid in 2.
Resumo:
The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant’s highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g−1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.
Resumo:
A lactonohydrolase from Fusarium oxysporum AKU 3702 is an enzyme catalyzing the hydrolysis of aldonate lactones to the corresponding aldonic acids. The amino acid sequences of the NH2 terminus and internal peptide fragments of the enzyme were determined to prepare synthetic oligonucleotides as primers for the PCR. An approximate 1,000-base genomic DNA fragment thus amplified was used as the probe to clone both genomic DNA and cDNA for the enzyme. The lactonohydrolase genomic gene consists of six exons separated by five short introns. A novel type of RNA editing, in which lactonohydrolase mRNA included the insertion of guanosine and cytidine residues, was observed. The predicted amino acid sequence of the cloned lactonohydrolase cDNA showed significant similarity to those of the gluconolactonase from Zymomonas mobilis, and paraoxonases from human and rabbit, forming a unique superfamily consisting of C-O cleaving enzymes and P-O cleaving enzymes. Lactonohydrolase was expressed under the control of the lac promoter in Escherichia coli.
Resumo:
Recent advances in studies of bacterial gene expression have brought the realization that cell-to-cell communication and community behavior are critical for successful interactions with higher organisms. Species-specific cell-to-cell communication is involved in successful pathogenic or symbiotic interactions of a variety of bacteria with plant and animal hosts. One type of cell–cell signaling is acyl-homoserine lactone quorum sensing in Gram-negative bacteria. This type of quorum sensing represents a dedicated communication system that enables a given species to sense when it has reached a critical population density in a host, and to respond by activating expression of genes necessary for continued success in the host. Acyl-homoserine lactone signaling in the opportunistic animal and plant pathogen Pseudomonas aeruginosa is a model for the relationships among quorum sensing, pathogenesis, and community behavior. In the P. aeruginosa model, quorum sensing is required for normal biofilm maturation and for virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes that represent potential virulence loci.