925 resultados para travel time prediction
Resumo:
Texas Department of Transportation, Austin
Resumo:
"9677 1202--SDTDC"--Cover.
Resumo:
In developed countries travel time savings can account for as much as 80% of the overall benefits arising from transport infrastructure and service improvements. In developing countries they are generally ignored in transport project appraisals, notwithstanding their importance. One of the reasons for ignoring these benefits in the developing countries is that there is insufficient empirical evidence to support the conventional models for valuing travel time where work patterns, particularly of the poor, are diverse and it is difficult to distinguish between work and non-work activities. The exclusion of time saving benefits may lead to a bias against investment decisions that benefit the poor and understate the poverty reduction potential of transport investments in Least Developed Countries (LDCs). This is because the poor undertake most travel and transport by walking and headloading on local roads, tracks and paths and improvements of local infrastructure and services bring large time saving benefits for them through modal shifts. The paper reports on an empirical study to develop a methodology for valuing rural travel time savings in the LDCs. Apart from identifying the theoretical and empirical issues in valuing travel time savings in the LDCs, the paper presents and discusses the results of an analysis of data from Bangladesh. Some of the study findings challenge the conventional wisdom concerning the time saving values. The Bangladesh study suggests that the western concept of dividing travel time savings into working and non-working time savings is broadly valid in the developing country context. The study validates the use of preference methods in valuing non-working time saving values. However, stated preference (SP) method is more appropriate than revealed preference (RP) method.
Resumo:
The manual is designed to bring out issues that are relevant in the valuation of rural travel time savings in Least Developed Countries (LDCs). It should also be relevant for other developing countries which do not have LDC status but have rural economy features typical of low income developing countries. The manual elaborates step-by-step procedures on how to design and execute studies to estimate the value of time (VoT) savings of rural travellers.
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Resumo:
Supply Chain Simulation (SCS) is applied to acquire information to support outsourcing decisions but obtaining enough detail in key parameters can often be a barrier to making well informed decisions.
One aspect of SCS that has been relatively unexplored is the impact of inaccurate data around delays within the SC. The impact of the magnitude and variability of process cycle time on typical performance indicators in a SC context is studied.
System cycle time, WIP levels and throughput are more sensitive to the magnitude of deterministic deviations in process cycle time than variable deviations. Manufacturing costs are not very sensitive to these deviations.
Future opportunities include investigating the impact of process failure or product defects, including logistics and transportation between SC members and using alternative costing methodologies.
Resumo:
Waiting time at an intensive care unity stands for a key feature in the assessment of healthcare quality. Nevertheless, its estimation is a difficult task, not only due to the different factors with intricate relations among them, but also with respect to the available data, which may be incomplete, self-contradictory or even unknown. However, its prediction not only improves the patients’ satisfaction but also enhance the quality of the healthcare being provided. To fulfill this goal, this work aims at the development of a decision support system that allows one to predict how long a patient should remain at an emergency unit, having into consideration all the remarks that were just stated above. It is built on top of a Logic Programming approach to knowledge representation and reasoning, complemented with a Case Base approach to computing.
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii1) remediation time; (ii2) remediation efficiency; and (ii3) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii1) increased remediation time (1.8–4.9 h, respectively); (ii2) decreased remediation efficiency (99–97%, respectively); and (ii3) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.
Resumo:
Nos dias de hoje usar o transporte público para nos deslocarmos de uma determinada origem para um determinado destino é uma realidade na vida da maioria das pessoas. Muitas destas deslocações fazem parte da rotina diária do cidadão, que depende destes transportes para as suas atividades do dia-a-dia. Nos últimos anos, o número de cidadãos que usa os transportes públicos como meio de deslocação tem vindo a aumentar consideravelmente. Contudo, a maioria dos operadores de transportes públicos pecam pela falta de pontualidade dos seus serviços, e pela falta de informação disponível ao cidadão acerca dos horários dos mesmos em tempo real. Tendo este problema em conta, foi desenvolvida uma solução capaz de realizar uma previsão do tempo de chegada de um transporte público, ao longo de todo o seu serviço. Previsão essa que é atualizada ao longo do percurso de forma a reduzir a margem de erro da informação apresentada. Com esta informação o cidadão pode planear melhor o seu dia e decidir qual é a melhor altura para se deslocar para a paragem, evitando ao máximo a perda de tempo à espera do seu transporte público. A solução final foi desenvolvida com a ajuda da empresa BEWARE e teve como objetivo a criação de uma aplicação web capaz de apresentar os tempos de espera dos autocarros em diferentes tipos de vista, bem como o acompanhamento do mesmo ao longo do percurso. Toda a informação utilizada na aplicação web foi criada por dois serviços de apoio que efetuam o controlo do autocarro ao longo do percurso, bem como os cálculos da previsão dos tempos de espera. O projeto foi dividido em quatro constituintes que foram repetidas durante o desenvolvimento da solução. A primeira constou na análise do problema, no levantamento e definição dos requisitos. A segunda incluiu o desenvolvimento de um algoritmo capaz de validar a posição do autocarro ao longo do seu percurso, detetando a paragem onde este se encontra e a hora de chegada à mesma. A terceira abrangeu o desenvolvimento de um algoritmo capaz de prever o tempo de chegada de um autocarro às paragens definidas na sua rota, recorrendo ao histórico de viagens realizadas anteriormente. A quarta consistiu no desenvolvimento da aplicação web, implementando todas as funcionalidades necessárias para que a aplicação consiga realizar o acompanhamento do autocarro no percurso, a consulta dos tempos de chegada e da previsão dos tempos às paragens seguintes recorrendo a três tipos de vistas diferentes, e a possibilidade de agendar notificações de forma a receber no email as previsões dos tempos de chegada nos dias e horas mais significativos para o utilizador.
Resumo:
Three existing models of Interplanetary Coronal Mass Ejection (ICME) transit between the Sun and the Earth are compared to coronagraph and in situ observations: all three models are found to perform with a similar level of accuracy (i.e. an average error between observed and predicted 1AU transit times of approximately 11 h). To improve long-term space weather prediction, factors influencing CME transit are investigated. Both the removal of the plane of sky projection (as suffered by coronagraph derived speeds of Earth directed CMEs) and the use of observed values of solar wind speed, fail to significantly improve transit time prediction. However, a correlation is found to exist between the late/early arrival of an ICME and the width of the preceding sheath region, suggesting that the error is a geometrical effect that can only be removed by a more accurate determination of a CME trajectory and expansion. The correlation between magnetic field intensity and speed of ejecta at 1AU is also investigated. It is found to be weak in the body of the ICME, but strong in the sheath, if the upstream solar wind conditions are taken into account.
Resumo:
Geometrical dependencies are being researched for analytical representation of the probability density function (pdf) for the travel time between a random, and a known or another random point in Tchebyshev’s metric. In the most popular case - a rectangular area of service - the pdf of this random variable depends directly on the position of the server. Two approaches have been introduced for the exact analytical calculation of the pdf: Ad-hoc approach – useful for a ‘manual’ solving of a specific case; by superposition – an algorithmic approach for the general case. The main concept of each approach is explained, and a short comparison is done to prove the faithfulness.