878 resultados para topological groups
Resumo:
We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.
Resumo:
Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
Hajnal and Juhasz proved that under CH there is a hereditarily separable, hereditarily normal topological group without non-trivial convergent sequences that is countably compact and not Lindelof. The example constructed is a topological subgroup H subset of 2(omega 1) that is an HFD with the following property (P) the projection of H onto every partial product 2(I) for I is an element of vertical bar omega(1)vertical bar(omega) is onto. Any such group has the necessary properties. We prove that if kappa is a cardinal of uncountable cofinality, then in the model obtained by forcing over a model of CH with the measure algebra on 2(kappa), there is an HFD topological group in 2(omega 1) which has property (P). Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper we introduce the notion of G-pre-weighted homogeneous map germ, (G is one of Mather's groups A or K.) and show that any G-pre-weighted homogeneous map germ is G-finitely determined. We also give an explicit order, based on the Newton polyhedron of a pre-weighted homogeneous germ of function, such that the topological structure is preserved after perturbations by terms of higher order.
Resumo:
The antimycobacterial activity of nitro/ acetamido alkenol derivatives and chloro/ amino alkenol derivatives has been analyzed through combinatorial protocol in multiple linear regression (CP-MLR) using different topological descriptors obtained from Dragon software. Among the topological descriptor classes considered in the study, the activity is correlated with simple topological descriptors (TOPO) and more complex 2D autocorrelation descriptors (2DAUTO). In model building the descriptors from other classes, that is, empirical, constitutional, molecular walk counts, modified Burden eigenvalues and Galvez topological charge indices have made secondary contribution in association with TOPO and / or 2DAUTO classes. The structure-activity correlations obtained with the TOPO descriptors suggest that less branched and saturated structural templates would be better for the activity. For both the series of compounds, in 2DAUTO the activity has been correlated to the descriptors having mass, volume and/ or polarizability as weighting component. In these two series of compounds, however, the regression coefficients of the descriptors have opposite arithmetic signs with respect to one another. Outwardly these two series of compounds appear very similar. But in terms of activity they belong to different segments of descriptor-activity profiles. This difference in the activity of these two series of compounds may be mainly due to the spacing difference between the C1 (also C6) substituents and rest of the functional groups in them.
Resumo:
In healthy people, glucose is metabolized through Embden-Meyerhoff pathway. In cases of diabetes mellitus, with the increased levels of glucose in insulin-insensitive tissues the Aldose Reductase (AR) in polyol pathway facilitates the conversion of glucose to sorbitol. In this cascade of events the accumulated sorbitol is attributed to be responsible for cataract, neuropathy and retinopathy in diabetic cases.1,2 Thus, the inhibition of AR in polyol pathway may prevent and lead to the cure of the complications arising out of the diabetes mellitus. In this background, Matsuda and coworkers3 studied the AR inhibitory activity of large number of flavones and related compounds from traditional antidiabetic remedies. Here, many of these compounds shared 2-Aryl-benzpyran-4-one as scaffold for different chemical groups surrounding this moiety. This offers scope to investigate the AR inhibitory activity of these compounds in relation to the functional group environment surrounding this core
Resumo:
Two series of closely related antimalarial agents, 7-chloro-4-(3’,5’-disubstitutedanilino) quinolines, have been analyzed using Combinatorial Protocol in Multiple Linear Regression (CP-MLR) for the structure-activity relations with more than 450 topological descriptors for each set. The study clearly suggested that 3’- and 5’- substituents of the anilino moiety map different domains in the activity space. While one domain favors the compact structural frames having aromatic, heterocyclic ring(s) substituted with closely spaced F, NO2 and O functional groups, the other prefers structural frames enriched with unsaturation, loops, branches, electronic content and devoid of carbonyl function. Also, this study gives an indication in favour of the electron rich centres in the aniline substituent groups for better antimalarial activity; an observation in line with several of the previous reports too. The models developed and the participating descriptors suggest that the substituent groups of the 4-anilino moiety of the 4-(3’, 5’-disubstitutedanilino)quinolines hold scope for further modification in the optimisation of the antimalarial activity.
Resumo:
We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.
Resumo:
Let $\H^n$ be the Heisenberg group of topological dimension 2n+1 . We prove that if n is odd, the pair of metric spaces $(\H^n, \H^n)$ does not have the Lipschitz extension property.
Resumo:
Date of Acceptance: 5/04/2015 15 pages, 4 figures
Resumo:
Quantum groups have been studied intensively for the last two decades from various points of view. The underlying mathematical structure is that of an algebra with a coproduct. Compact quantum groups admit Haar measures. However, if we want to have a Haar measure also in the noncompact case, we are forced to work with algebras without identity, and the notion of a coproduct has to be adapted. These considerations lead to the theory of multiplier Hopf algebras, which provides the mathematical tool for studying noncompact quantum groups with Haar measures. I will concentrate on the *-algebra case and assume positivity of the invariant integral. Doing so, I create an algebraic framework that serves as a model for the operator algebra approach to quantum groups. Indeed, the theory of locally compact quantum groups can be seen as the topological version of the theory of quantum groups as they are developed here in a purely algebraic context.
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
Resumo:
This thesis discusses subgroups of mapping class groups of particular surfaces. First, we study the Torelli group, that is, the subgroup of the mapping class group that acts trivially on the first homology. We investigate generators of the Torelli group, and we give an algorithm that factorizes elements of the Torelli group into products of particular generators. Furthermore, we investigate normal closures of powers of standard generators of the mapping class group of a punctured sphere. By using the Jones representation, we prove that in most cases these normal closures have infinite index in the mapping class group. We prove a similar result for the hyperelliptic mapping class group, that is, the group that consists of mapping classes that commute with a fixed hyperelliptic involution. As a corollary, we recover an older theorem of Coxeter (with 2 exceptional cases), which states that the normal closure of the m-th power of standard generators of the braid group has infinite index in the braid group. Finally, we study finite index subgroups of braid groups, namely, congruence subgroups of braid groups. We discuss presentations of these groups and we provide a topological interpretation of their generating sets.
Resumo:
A classical study about Klein and Riemann surfaces consists in determining their groups of automorphisms. This problem is very difficult in general,and it has been solved for particular families of surfaces or for fixed topological types. In this paper, we calculate the automorphism groups of non-orientable bordered elliptic-hyperelliptic Klein surfaces of algebraic genus p> 5.